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Abstract

Metamaterials are man-made artificial materials of which the optical properties can
be engineered to generate the desired response to an incident electromagnetic wave.
They consist of sub-wavelength sized structures which can be thought of as the atoms
in conventional materials. The collective response of a randomly or periodically or-
dered ensemble of such meta-atoms defines the properties of the metamaterial, which
can be described in terms of effective material parameters such as the permittivity,
permeability, refractive index and impedance. Here we show how these metamaterials
can be exploited for sensing experiments in the visible and near-infrared wavelength
ranges of the electromagnetic spectrum. The meta-atoms used in this work consist
of nanostructures defined in gold and silica, which are both very stable and bio-
compatible materials. At the interface between nano-sized noble metal particles and
dielectric media, collective oscillations of the electron cloud in the metal particles
can be resonantly excited, which are known as plasmon resonances. In this work we
deal with two types of plasmon resonances: localized surface plasmon resonances
(LSPRs) and propagating surface plasmon polaritons (SPPs).

The investigated sample structures are manufactured by combining conventional litho-
graphy (top-down) and self-assembly based colloidal lithography (bottom-up) proto-
cols with standard microprocessing techniques. In that way, we fabricated a self-
assembled version of the widely studied double fishnet negative refractive index
metamaterials and benchmarked this structure to e-beam lithography based reference
structures. We proved that these self-assembled metamaterials can be produced on
large scales with a small number of defects and similar performance as the reference
structures.

In the second part of this work, we focused on self-assembled randomly distributed
nanoparticle arrays on top of a continuous gold layer and a thin silica spacer for
refractive index sensing applications. We proved that we can reduce the line widths
of intrinsically broad dipole resonances in gold nanoparticle arrays by measuring
both the amplitude and phase of the reflected waves in spectroscopic ellipsometry
measurements. By spectrally detuning the electric dipole LSPR for P- and S-polarized
waves we can pick up the transition between in- and out-of-phase oscillation of the
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free electrons in the metal nanoparticles with respect to the incident wave. As a
result the line width of the LSPRs is largely reduced, resulting in a major boost of the
Figure-Of-Merit (FOM) for refractive index sensing which could eventually result in
much lower detection limits.

In the third part of this work we optimized the plasmonic metamaterial substrates
for refractive index sensing by changing from random particle distributions towards
periodic arrays on top of a continuous gold layer and a thin silica spacer. We clearly
observe that the effects of inhomogeneous broadening are largely reduced, giving
rise to narrower line widths both in amplitude- and phase sensitive measurements,
resulting in even larger values for the FOM. The grating structure allows for very
efficient excitation of propagating SPP modes on the gold film below, which interact
strongly with the localized modes. As we scan the angle of incidence, we clearly
observe anti-crossing of the SPP and LSPR modes resulting in highly asymmetric
line shapes and increased phase differences due to Fano-interference. We show that
the interaction between the SPP mode and the LSPR mode can be used to increase
the refractive index sensitivity of the LSPR mode dramatically, which in combination
with the reduced line widths results in extremely high values for the FOM.



Samenvatting

Metamaterialen zijn artificiële materialen waarvan de optische eigenschappen ontwor-
pen werden om de gewenste optische interactie te bekomen onder invloed van een
aangelegde elektromagnetische golf. Ze bestaan uit structuren met afmetingen kleiner
dan de golflengte van de inkomende golf, die we kunnen beschouwen als het equi-
valent van atomen in een conventioneel materiaal. De gezamelijke interactie van
deze meta-atomen die periodiek of willekeurig geordend kunnen zijn definieert de
eigenschappen van het metamateriaal, die beschreven kunnen worden met behulp van
effectieve materiaalparameters zoals de permittiviteit, de permeabiliteit, de brekings-
index en de impedantie. In dit werk tonen wij aan hoe deze metamaterialen kunnen
aangewend worden als sensoren in het zichtbare en het nabije infrarood gedeelte
van het elektromagnetische spectrum. De gebruikte meta-atomen zijn opgebouw
uit goud en silica, beiden zeer stabiele en bio-compatiebele materialen. Op het
grensvlak tussen nano-dimensionele edelmetaal deeltjes en diëlectrica kunnen collec-
tieve oscillaties van de elektronwolk in het metaaldeeltje aangeslagen worden, welke
gekend zijn als plasmons. In deze thesis bestuderen we twee types van deze reso-
nanties: lokale oppervlakte resonanties (in kleine edelmetaal deeltjes) en propagerende
plasmon resonanties (op de interface tussen een vlakke edelmetaal film en een diëlec-
tricum).

De bestudeerde stalen werden geproduceerd door een combinatie van conventionele
lithografische processen (top-down), zelf-organisatie gebaseerde nanopartikel litho-
grafie processen (bottom-up) en standaard micro-fabricatie processen. Op die manier
realiseerden we een op zelf-organisatie gebaseerde variant van de zogenaamde “double
fishnet” metamaterialen die een negatieve brekingsindex vertonen en we vergeleken
dit materiaal met referentiestructuren gealiseerd via elektronen-bundel lithografie.
We hebben aangetoond dat deze zelf-organisatie gebaseerde materialen op grote op-
pervlaktes gerealiseerd kunnen worden met een beperkt aantal defecten en een verge-
lijkbaar gedrag als de referentiestructuren.

In het tweede deel van deze thesis hebben we ons toegespitst op willekeurig ge-
ordende goud nanodeeltjes bovenop een continue goud film en een dunne silica tussen-
laag voor brekingsindex-gebaseerde sensoren. We hebben aangetoond dat we de
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lijnbreedte van intrinsiek brede dipool-resonanties kunnen verkleinen door naast de
intensiteit ook de fase van de resonanties op te meten in spectroscopische ellip-
sometrie metingen. Door de samples onder een bepaalde hoek te belichten ver-
schuiven de dipool resonanties spectraal ten opzichte van elkaar voor de P- en S-
polarizatietoestanden, waardoor we het fase-verschil tussen in- en uit-fase oscillatie
van de elektronwolk ten opzichte van de inkomende golf kunnen meten. De resul-
terende lijnbreedte van de lokale resonanties wordt hierdoor veel smaller, wat resul-
teert in een veel hogere waarde voor de kwaliteitsfactor van de resonantie en ultiem
kan leiden tot een verlaging van de detectielimiet voor brekingsindex-gebaseerde
sensoren.

In het derde deel van deze thesis hebben we de stalen verder geoptimaliseerd voor
toepassing in brekingsindex-gebaseeerde sensoren door van willekeurig geordende
structuren naar periodieke structuren over te gaan. We merken dat de effecten van
inhomogene verbreding van de resonanties sterk onderdrukt zijn, waardoor smallere
lijnbreedtes bekomen worden voor de intensiteit- en fase-gevoelige metingen, wat re-
sulteert in een verhoging van de kwaliteitsfactor van de resonanties. Bovendien leent
de periodieke structuur van nanodeeltjes zich als een zeer efficient diffractierooster
voor het aanslaan van propagerende golven op de onderliggende goudlaag, die sterk
interageren met de lokale resonanties in de nanodeeltjes. Wanneer we de inval-
shoek variëren merken we duidelijk anti-kruisend gedrag van de propagerende en de
lokale modes, wat resulteert in zeer asymmetrische resonantiepieken en grotere fase-
verschillen ten gevolge van Fano-interferenties. We demonstreren dat de interactie
tussen beide modes kan gebruikt worden om de gevoeligheid voor de brekingsindex
van de lokale mode significant te verhogen, wat in combinatie met de smalle lijn-
breedte resulteert in zeer hoge waarden voor de kwaliteitsfactor van de resonantie.
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Chapter 1

Introduction

1.1 General introduction

Over the past few decades we have witnessed a vast increase of very different tech-
nological applications that have substantially influenced our way of living. Many of
those we could never even have imagined 20 years ago. The rapid advances in the
scaling of integrated circuits (IC’s) down to nanometer dimensions have opened up
a huge opportunity window for affordable consumer electronics which are all around
us nowadays. This fast technological revolution was already predicted by Richard P.
Feynman in his legendary presentation “There’s plenty of room at the bottom” [1]
and by Gordon E. Moore who stated in his famous law that “the number of transistors
that can be placed inexpensively on an integrated circuit doubles approximately every
two years” [2]. Moore’s law has defined the road map for the semiconductor industry
and the continued scaling down of IC’s for the past decades and to that respect we can
state that it lies at the basis of the field of nanotechnology that has been growing ex-
ponentially since the 1980’s. With ever improving performance of device processing
technologies, several new research fields were born in the area of nanotechnology.
One of those fairly new research fields is “plasmonics”, a rapidly growing field in
which surface plasmons are investigated. But first we have to ask ourselves what
is a plasmon, and what is it useful for? A plasmon is the collective oscillation of
free electrons, which usually occurs at the interface of (noble) metals and a dielectric
medium. More formally, a plasmon is a quasiparticle which can be defined as a quan-
tum of plasma oscillation, similar to photons being a quantum of light, or phonons
being a quantum of mechanical vibration. Plasmons as such are already known
for a long time, but only recent technological advances allowed people to control
them at will on the nanometer scale. The improved control of plasmons opened up
possibilities for many new applications in sensors, improved semiconductor devices
or even optical chips. Another new research field in nanotechnology covers the study
of “metamaterials”, which are a special class of man-made optical materials with a

1
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tailored response to electromagnetic waves. The history of this field dates back as far
as 1968, when the Russian physicist Viktor Veselago [3] theoretically described the
electromagnetic response of a material with simultaneous negative values for the real
part of the electric permittivity and the magnetic permeability. He pointed out that
such a material would exhibit a negative refractive index. Back then this unexpected
result raised a lot of skepticism, as no such material was known to exist. However,
in 2000 John Pendry picked up this old concept and developed it further. Veselago
already showed that such a material could be used as a flat lens, but Pendry also
predicted that this lens would have non-diffraction limited resolution, resulting in the
concept of “a perfect lens” [4]. This paper by Pendry really triggered the blooming
of the field of metamaterials, which today covers many more electromagnetic ma-
terials for a very wide range of applications, such as optical invisibility (cloaking),
polarization control and even slowing down light (transition optics).

This thesis combines the aforementioned fields of plasmonics and metamaterials,
focusing on the design, fabrication and characterization of (self-assembled) plas-
monic structures for (bio-) sensing applications.

1.2 Thesis outline

In Chapter 2 the theoretical framework for all subjects dealt with in this thesis is
provided. First the basic properties of electromagnetic waves are discussed, after
which the fields of plasmonics and metamaterials are introduced, followed by their
combined use for biosensing applications. Subsequently the principles of spectro-
scopic ellipsometry and the different approaches to simulate the behavior of plas-
monic structures are outlined.

In Chapter 3 a self-assembled metamaterial with a negative refractive index (NIM)
is discussed. It is based on one of the most promising designs in the field and de-
scribed in terms of effective material parameters. The self-assembled metamaterial is
benchmarked with state-of-the art samples based on conventional e-beam lithography.

In Chapter 4 the angle- and polarization dependent optical response of a self-assembled
random array of plasmonic resonators is investigated. The phase difference between
the excited plasmon resonances for both polarization states is characterized. The re-
sulting line widths are significantly reduced compared to the intensity based measure-
ments, resulting in much higher Figures Of Merit (FOMs) for sensing applications.

In Chapter 5 the concepts of the previous chapter are extended into a periodic array
of plasmonic resonators. As a result, the effects of inhomogeneous broadening of
the local modes are suppressed, while propagating modes are excited by the grating
which interfere with the localized modes. We observe anti-crossing behavior of
localized and propagating modes and observe more pronounced phase differences
in the regions where these modes interfere strongly. This interaction provides an
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additional degree of freedom to tune the properties of refractive index based sensing
devices.
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Chapter 2

Theoretical background

In this chapter the theoretical background needed for the understanding of this thesis
is outlined. In the first section we start with basic properties of electromagnetic
radiation, the different polarization states of an electromagnetic (EM) wave and its
propagation in different media. In the second section we give a basic introduction to
plasmonics and the excitation of surface plasmons using EM-waves. We also look at
the phase of plasmon resonances and their different applications. In the third section
we discuss plasmonic metamaterials, their description in terms of effective material
parameters and their basic building blocks, focusing on negative index materials
(NIMs). In the fourth section we focus on the different types of plasmonic (metama-
terial) biosensors and the most important parameters to describe their performance.
In the fifth section we discuss spectroscopic ellipsometry: the measured quantities,
the mathematical formalism and the various measurement configurations that can be
used. The sixth section provides a short introduction to the numerical simulations
that are used in the remainder of this thesis.

2.1 Electromagnetic waves

EM-waves are all around us in our everyday life. Only a small fraction of the
wide variety of EM-waves surrounding us is visible to our eyes, which is known
as “light” or the visible part of the EM spectrum (fig 2.1). This visible part of the
spectrum consists of photons (the carrier of light, or more general of EM-waves)
with a wavelength between 380 and 760 nm. Photons with an arbitrary wavelength
outside of this range are not visible to the human eye, but they are very important
in technological applications surrounding us. Some examples include the MHz and
GHz bands for our mobile phones, Radio frequencies (RF) used for radio and TV
broadcasts and X-rays used for medical imaging.

This wide variety of different EM-waves originates from the same theory, their
main difference is the fact that they have different wavelengths (or frequencies) and

7
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Figure 2.1: The electromagnetic spectrum

very different propagation properties in different media. In this thesis we will focus
on visible and near infrared (NIR) EM waves for plasmonic metamaterial biosensors.

2.1.1 Basic properties

The most fundamental form of EM-waves are transverse plane waves, which can be
easily derived starting from the Maxwell equations in an infinite medium in the ab-
sence of sources (2.1). Here we show the formal derivation of such waves, which are
essential in the understanding of the propagation behavior for any other polarization
state of an EM-wave (see section 2.1.2).

∇ · B = 0 ∇ × E + ∂B
∂t = 0

∇ · D = 0 ∇ ×H − ∂D
∂t = 0

(2.1)

If we assume solutions with a harmonic time dependence e−iωt, these equations
can be rewritten in order to obtain the field amplitudes.

∇ · B = 0 ∇ × E − iωB = 0

∇ · D = 0 ∇ ×H + iωD = 0
(2.2)

In uniform isotropic media, these expressions can be reformulated in terms of the
electric permittivity ε and the magnetic permeability µwhich describe the relationship
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between the electric displacement D, the magnetic field H, the electric field E and the
magnetic induction B (2.3). Both ε and µ are in general complex valued functions of
the angular frequency ω, but for now we assume that they are real and positive (i.e.
no losses).

D = εE B = µH (2.3)

Plugging equation 2.3 into 2.2 we obtain the equations for E and B

∇ × E − iωB = 0 ∇ × B + iωµεE = 0 (2.4)

By calculating the divergence of equations 2.4, we obtain the Helmholtz wave
equation

(∇2 + µεω2)
{

E
B

}

= 0 (2.5)

If we look for plane waves propagating in the z-direction as possible solutions
( eikz−iωt), we obtain the relationship between the wave number k and the frequency ω
(2.6).

k =
√
µεω (2.6)

This expression gives rise to the definition of the phase velocity (ν) and the
refractive index n, which are related by equation 2.7. The phase velocity describes
how any frequency component in a wave propagates, which is determined by the
refractive index, that in general is a complex function of the frequency.

ν =
ω

k
=

1
√
µε
=

c
n

(2.7)

The refractive index itself can therefore be described in its most general shape

n = n′ + in′′ =

√

µ

µ0

ε

ε0
(2.8)

For a nondispersive medium (µ and ε independent of ω), we can rewrite the
possible plane wave solutions of the Maxwell equations (2.1) in their most general
shape,

u(z, t) = aeikz−iωt + be−ikz−iωt = aeik(z−νt) + be−ik(z+νt) (2.9)

from which it is clear that we are looking at waves traveling in the positive and
negative z-direction with phase velocity ν. The derivations above also hold in case of
dispersive materials, but in that case the shape of the propagating wave changes as it
propagates. In order to formally derive the behavior of a plane wave with frequency
ω and wave vector k = kq we have to verify that the solution in equation 2.9 is a
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solution of equations 2.1 and 2.5. If we look at the real parts of the complex fields E
and B, the solutions can be rewritten to

E(r, t) = E0eikq·r−iωt B(r, t) = B0eikq·r−iωt (2.10)

in which E0, B0 and q are constant vectors. By plugging in these values into
equation 2.5, it follows that q should be a unit vector, and the only thing that remains
is to fix the vector parameters such that equations 2.1 are satisfied. In that way, we
obtain the following conditions from the divergence equations

q · E0 = 0 q · B0 = 0 (2.11)

which implies that E and B are both perpendicular to the propagation direction
q. From the curl equations we can derive the other constraints that apply to E and B,
which result in the following condition

B0 =
√
µεq × E0 =

n
c

q × E0 (2.12)

from which we can see that cB and E have the same dimensions and the same
magnitude (in free space). Moreover, it is also clear that the electric and magnetic
fields are perpendicular to the propagation direction and to each other. Plane waves
are often expressed in terms of E and H and in that case equation 2.12 can be rewritten
as follows

H0 = q × E0

Z
(2.13)

with Z (equation 2.14) being the impedance of the medium.

Z =

√

µ

ε
(2.14)

In the case n is a real number, the electric and magnetic fields have the same phase
and the resulting transversal plane wave propagates as illustrated in figure 2.2.

A propagating plane wave transports energy and the time-averaged energy flux
can be extracted from the real part of the Poynting vector S (equation 2.15).

S =
1
2E ×H∗ (2.15)

The resulting time-averaged energy density u is given by equation 2.16. Note that
both electric and magnetic fields contribute to the energy flow, but that these are the
same in magnitude for a homogeneous plane wave, such that we write the energy flow
as function of electric fields only.

u =
ε

2 |E0|2 (2.16)
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Figure 2.2: Schematic representation of a transverse electromagnetic plane wave with wave
vector k and wavelength λ propagating to the right.

So far we only considered the refractive index to be real, but in its most general
shape (equation 2.8), it also has an imaginary part. If we also take this into account,
we are looking at inhomogeneous plane waves, which decay (positive values) or
increase (negative values) in amplitude as they propagate.

2.1.2 Polarization states

In the previous section we derived the properties of a transverse plane wave, the most
fundamental type of EM-wave. Now we want to take a look at other polarization
states, which are a superposition of different plane wave states. We start from 2
transverse plane waves which are polarized perpendicular with respect to each other.

E1 = E1E1,0eik·r−iωt B1 =
√
µε

k×E1,0

k

E2 = E2E2,0eik·r−iωt B2 =
√
µε

k×E2,0

k

(2.17)

A linear combination of these two plane waves with electric field direction (po-
larization) E1 and E2 and complex electric field amplitude E1,0 and E2,0 is the most
general homogeneous plane wave propagating wave vector k.

E(r, t) = (E1E1,0 + E2E2,0)eik·r−iωt (2.18)

The real and complex parts of the electric field amplitudes determine the po-
larization state of the combined EM-wave, which depends both on the magnitude
and phase of the field amplitudes of the constituent waves. In the simplest case both
waves are in phase, and their superposition will be a homogeneous plane wave (fig
2.3) of which the polarization angle θ (with respect to E1) and the magitude E are
given by equation 2.19.
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Figure 2.3: Schematic representation of a linearly polarized wave, composed of 2 transverse
electromagnetic plane waves which are in phase

θ = arctan E2,0/E1,0 E =
√

E1,0
2 + E2,0

2 (2.19)

When the two constituent plane waves are out of phase, their superposition will
in general be elliptically polarized. The simplest example of such a wave consists of
the superposition of two orthogonal plane waves with the same magnitude which are
out of phase by π/2, which results in a circularly polarized wave (fig 2.4), of which
the mathematical description is given by equation 2.20.

E(r, t) = E0(E1 ± iE2)eik·r−iωt (2.20)

If we define the direction of the unit vectors E1 and E2 to be along the directions
x and y, and the propagation direction to be the z-direction, then the components of
the electric fields are obtained by taking the real part of equation 2.20:

Ex(r, t) = E0 cos(kz − ωt) Ey(r, t) = ∓E0 sin(kz − ωt) (2.21)

From this formula it is clear that at a fixed point in space, the electric field
magnitude is constant and rotates at a frequency ω around the propagation direction.
In case we take the upper signs in equations 2.20 and 2.21 the wave is left circularly
polarized whereas for the lower signs it is right circularly polarized. These two
circular polarization states can also be used as a set of basic fields in order to describe
any other polarization state. The corresponding unit vectors can be written as follows:

E± =
1
√

2
(E1 ± iE2) (2.22)
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Figure 2.4: Schematic representation of a circularly polarized wave, composed of 2
transverse electromagnetic plane waves which are out of phase by π/2

Using these unit vectors, a homogeneous plane wave (fig 2.5) can be constructed
based on equation 2.22

E(r, t) = (E+E+ + E−E−)eik·z−iωt (2.23)
in which E+ and E− are the complex amplitudes, which in this case have equal

magnitudes.

Figure 2.5: Schematic representation of two circularly polarized waves which make up a
transverse electromagnetic plane wave

In the more general case where the magnitudes (amplitude and/or phase) of the
circularly polarized waves differ, we end up with an elliptically polarized wave (fig.
2.6). The principal axes of the ellipse are given by the vectors E1 and E2. The ratio
between the two axes is |(1+ r)/(1− r)| with E−/E+ = r. In case there is also a phase
difference between the constituent waves, which can be expressed as
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E−/E+ = reiα (2.24)
where the rotation angle of the main axis of the ellipse is given by α/2.

Figure 2.6: Schematic representation of two circularly polarized waves which make up an
elliptically polarized wave

Any elliptical polarization state can also be described as a superposition of two
linearly polarized waves (equation 2.17) with different magnitudes for E1,0 and E2,0
and a phase difference between them, as illustrated in figure 2.7.

Figure 2.7: Schematic representation of an elliptically polarized wave, composed of 2
transverse electromagnetic plane waves which are out of phase by π/4

In section 2.5 we’ll focus in some more detail on the different polarization states
in the framework of spectroscopic ellipsometry.
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2.1.3 Wave propagation in different media

In the previous sections we looked at the basic properties of idealized EM-waves
and their mathematical description. Here we look at the propagation behavior of
these waves in different media. The propagation behavior can be described entirely
in terms of the electric permittivity (ε = ε ′ + iε′′) and the magnetic permeability
(µ = µ′ + iµ′′), which are both complex functions of the frequency and can be
related to the refractive index (n = n′ + in′′) and the impedance (Z = Z′ + iZ′′)
by equations 2.8 and 2.14. All of these quantities can take a huge range of values for
different materials and different frequency values. These differences are responsible
for the effect of frequency dispersion: different propagation behavior of EM-waves
for different frequencies. Dispersion gives rise to the splitting up of a ray of white
light into its different frequency components in a prism (fig 2.8(a)) and the formation
of a rainbow (fig 2.8(b)).

(a) (b)

Figure 2.8: Two examples of dispersion and refraction. (a) A beam of white light is split up
into its spectral components by a prism. (b) The formation of a rainbow.

Both phenomena originate from frequency dispersion in the refractive index. For
each of the wavelengths in the visible spectrum, the refractive index of the prism
and the collection of rain droplets is slightly different. At the interface between two
media, the angle between the normal and the transmitted wave differs from the angle
between the incident wave and the normal, according to Snell’s law.

sin θi
sin θr

=
ν1

ν2
=

n2

n1
(2.25)

This change in the transmitted angles is known as refraction and originates from
the wavelength dependence of the refractive index. In order to formally derive this
behavior, we consider the polarization dependent properties of electromagnetic waves
that are incident on the interface between two different media. We consider two
different perpendicular polarization states of a homogeneous plane wave: one with
the electric field perpendicular to the plane of incidence (fig 2.9(a)) and one with the
electric field parallel to the plane of incidence (fig 2.9(b)). The former is S-polarized
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(a) (b)

Figure 2.9: Illustration of Snell’s law and definition of S-polarized (a) and P-polarized (b)
waves

or a transverse electric (TE) wave, while the latter is P-polarized or a transverse
magnetic (TM) wave.

For both polarization states the appropriate boundary conditions need to be ap-
plied in order to derive the propagation behavior of the incident wave at the interface.
Three different waves are involved in this process, which depend on the material
properties of both media: the incident wave (equation 2.26), the refracted wave
(equation 2.27) and the reflected wave (equation 2.28).

E1 = E1,0eik1·r−iωt B1 =
√
µ1ε1

k1×E1
k1

(2.26)

E2 = E2,0eik2·r−iωt B2 =
√
µ2ε2

k2×E2
k2

(2.27)

E1′ = E1′,0eik1′ ·r−iωt B1′ =
√
µ1ε1

k1′×E1′
k1′

(2.28)

The magnitudes of the different wave numbers are given by

|k1| = |k1′ | = k = ω
√
µ1ε1 |k2| = k2 = ω

√
µ2ε2 (2.29)

At the interface between medium 1 and medium 2 (z = 0) the boundary conditions
have to be satisfied for all points. The spatial and time variation of all fields must be
the same there, which implies that all phase vectors should be equal, independent of
the boundary conditions.

(k1 · r)inter f ace = (k2 · r)inter f ace = (k1′ · r)inter f ace (2.30)
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From equation 2.30 it is clear that all 3 wave vectors lie in the same plane. As
k1 = k1′ , it follows that the angle between the incident and refracted wave should be
equal, and we also can derive Snell’s law directly.

k1 sin θi = k2 sin θr = k1′ sin θi (2.31)

The boundary conditions that have to be satisfied can now be written in terms
of the field values (equations 2.26-28). The normal components of D and B and the
tangential components of E and H have to be continuous at the interface, which can
be expressed as follows

[ε1(E1,0 + E1′,0) − ε2E2,0]·n = 0
[k1 × E1,0 + k1′ × E1′,0 − k2 × E2,0·n = 0

[E1,0 + E1′,0 − E2,0)] × n = 0
[ 1
µ1

(k1 × E1,0 + k1′ × E1′,0) − 1
µ2

(k2 × E2,0)] × n = 0

(2.32)

in which n is a unit vector perpendicular to the interface. From this point onwards,
it is useful to split up the derivation in 2 cases for S-polarized (fig 2.9(a)) and P-
polarized (fig 2.9(b)) waves, as any other polarization state can be constructed based
on these two polarization states.

For the S-polarized case, the first equation from 2.32 yields no result, as the
electric fields are all perpendicular to the plane of incidence. From the third and
fourth equation in 2.32 we can derive equations 2.33, while the second equation in
2.32 reproduces the third when we apply Snell’s law.

E1,0 + E1′,0 − E2,0 = 0
√

ε1
µ1

(E1,0 − E1′,0) cos θi −
√

ε2
µ2

(E2,0) cos θr = 0
(2.33)

From the obtained boundary conditions, the relative amplitudes of the refracted
and reflected waves are obtained, which gives the following complex transmission
and reflection coefficients:

ts =
E2,0
E1,0
=

2n1 cos θi
n1 cos θi+

µ1
µ2

√
n22−n12 sin2 θi

rs =
E1′ ,0
E1,0
=

n1 cos θi−
µ1
µ2

√
n22−n12 sin2 θi

n1 cos θi+
µ1
µ2

√
n22−n12 sin2 θi

(2.34)

in which the square roots are introduced using Snell’s law to rewrite everything
as function of the properties of the incident wave.

For the P-polarized case a similar derivation can be made, for which the tangential
E and H have to be continuous, which results in

cos θi(E1,0 − E1′,0) − cos θrE2,0 = 0
√

ε1
µ1

(E1,0 + E1′,0) −
√

ε2
µ2

(E2,0) = 0
(2.35)
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In this case the normal component of D should be continuous as well, which
duplicates the second equation when we apply Snell’s law. Again, we can write the
relative field amplitudes as function of the properties of the incident wave, which
gives the following complex transmission and reflection coefficients:

tp =
E2,0
E1,0
=

2n1n2 cos θi
µ1
µ2

n22 cos θi+n1
√

n22−n12 sin2 θi

rp =
E1′ ,0
E1,0
=

µ1
µ2

n2
2 cos θi−n1

√
n22−n12 sin2 θi

µ1
µ2

n22 cos θi+n1
√

n22−n12 sin2 θi

(2.36)

The propagation behavior of any type of EM-wave can be fully described by
means of equations 2.34 and 2.36, which are often referred to as the Fresnel equa-
tions. In general the refractive index n, the electric permittivity ε and the magnetic
permeability µ are all complex functions of the frequency. At optical frequencies
in conventional materials it is often stated that µ1 = µ2 = 1, but as we’ll show in
section 2.3, this is not valid in case of optical metamaterials which also exhibit a
strong magnetic response.

The electric permittivity of a material depends primarily on the electric polariz-
ability, which is closely related to the electron density. For the plasmonic metama-
terials of interest in this thesis, we restrict ourselves to dielectrics and noble metals
in the visible and NIR wavelength range of the EM spectrum. In case of dielectric
materials (such as silica (S iO2)), the refractive index n and permittivity ε show almost
no frequency dispersion and can be treated as positive real numbers (damping can
be ignored). Metals show a totally different behavior, and can be described by the
Drude-Sommerfeld model:

εDrude(ω) = ε∞ −
ωp

2

ω2 + iγω
(2.37)

in which ωp is the plasma frequency, and γ a damping factor. The contribution
of the bound electrons to the polarizability is included in ε∞, which is 1 in case only
the conduction band electrons contribute. This model gives a fairly good description
for noble metals in the visible and NIR spectral range, although some modifications
are needed at shorter wavelengths in order to compensate for inter-band transitions.
Therefore in numerical calculations we use adapted models based on experimental
data to obtain a more accurate description of the investigated structures. In general,
the permittivity can be written as ε(ω) = ε ′ + iε′′. The real part is negative for
frequencies below the plasma frequency and relates directly to the polarizability of
the metal, while the imaginary part takes positive values and relates to the dam-
ping of propagating waves and the phase of the polarizability. An overview of the
experimental values [1] of the permittivity for gold (Au), which we used in our
numerical simulations is given in figure 2.10.

It is clear that also the propagation behavior of EM-waves will be influenced by
the effects of dispersion. So far we only considered the propagation of idealized
waves at a fixed frequency. In that case the permittivity defines the amplitude, phase
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Figure 2.10: Electric permittivity of gold [1]

and damping of a propagating wave. In that respect, we introduced the concept of
phase velocity ν (equation 2.7), which defines the propagation velocity for a sin-
gle frequency component. In practical applications even the most idealized source
will contain more than one frequency component or wavelength, due to finite pulse
durations or inherent broadening in the source. All of these frequency components
propagate with slightly different phase velocities and as a consequence both the am-
plitudes and phases tend to show changes with respect to each other. This implies
that in dispersive media the velocity of energy flow can differ largely from the phase
velocity.

For dispersive media, the frequency depends on the wave vector (ω = ω(k)).
In most spectral regions ω is a slowly varying function of k, but in certain spectral
regions the variation is much more pronounced, for example in the vicinity of the
plasma frequency of a metal. If we assume for now that k and ω are real numbers, we
can write a superposition of homogeneous plane waves (equation 2.9) to construct a
more general solution for a plane wave in a dispersive medium

u(z, t) = 1
√

2π

∫ +∞

−∞
A(k)eikz−iω(k)tdk (2.38)

where A(k) defines the amplitude for the different components of the superposi-
tion of plane waves. The amplitude values are obtained by the Fourier transform of
the spatial amplitude u(z, t) at t = 0



20 Chapter 2

A(k) = 1
√

2π

∫ +∞

−∞
u(z, 0)e−ikzdz (2.39)

In that way, we obtain homogeneous plane wave u(z, t) = eik0z−iω(k0)t. If we
consider a finite wave train u(z, 0) at t = 0 then A(k) will not be a delta function
but a peaked function with a finite width (determined by the length of the wave train)
∆k which is centered around the wave number k0. If we assume a fairly sharp shape
of this peaked function (i.e. the wave train is rather long), then the frequency ω(k)
can be expanded around k0.

ω(k) = ω0 +
∂ω

∂k
|0(k − k0) + . . . (2.40)

By inserting this expansion into equation 2.38, we can derive u(z, t)

u(z, t) ≈ ei[k0
∂ω
∂k |0−ω0]t
√

2π

∫ +∞

−∞
A(k)ei[z− ∂ω

∂k |0t]kdk (2.41)

If we compare this with equation 2.39 then it follows that the integral in equation
2.42 describes u(z′, 0) with z′ = z − ∂ω

∂k |0t, from which we obtain

u(z, t) ≈ u(z − t
∂ω

∂k
|0, 0)ei[k0

∂ω
∂k |0−ω0]t (2.42)

This illustrates that apart from an overall phase factor, the pulse travels undis-
torted in shape with a group velocity νg which can differ significantly from the (aver-
age) phase velocity νp which was already introduced in equation 2.7.

νg =
∂ω

∂k
|0 (2.43)

As the group velocity of a pulse describes its propagation velocity, it also deter-
mines at which rate the pulse is transporting energy in the direction of the Poynting
vector (equations 2.15 and 2.16). The relationship between ω and k can be written in
its most general shape

ω(k) = ck
n(k) (2.44)

from which we obtain the general expressions for the phase velocity νp and group
velocity νg as function of the refractive index n

νp =
ω(k)

k
=

c
n(k) (2.45)

νg =
c

n(ω) + ω(∂n/∂ω) (2.46)

In most conventional materials with normal dispersion ((∂n/∂ω) > 0 and n > 1)
the velocity of energy flow is smaller than the phase velocity and smaller than c.
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Figure 2.11: Roman nanotechnology: the Lycurgus gup shows up green/yellow (left) when
light reflects from the outer surface and red (right) when it is illuminated from the inside [5]

In regions of anomalous dispersion, huge differences between the phase and group
velocity can occur. One important example of such materials are electromagnetic
metamaterials, which will be discussed in section 2.3. For a more comprehensive
overview of wave propagation, the reader is referred to Jackson [2].

2.2 Plasmonics

The most famous and probably oldest example of a plasmonic material is the Ly-
curgus Cup (fig 2.11), which dates back to the 4th century. This glass cup contains
nanometer sized silver and gold clusters, in which localized plasmon resonances can
be excited with visible light. When illuminated from the outside, the light reflected
from the outer surface produces a green/yellow color but when it is illuminated from
the inside the transmitted light produces a red color [3]. This effect has been used for
many centuries in the fabrication of stained glass windows in historical buildings but
it was only in the beginning of the last century that people realized that these effects
could be attributed to plasmonic resonances [4].

The first experimental observation of collective electron oscillations already dates
back more than one century [6], when Wood reported on Wood’s anomalies: intensity
drops in optical reflection spectra of metal gratings. It was only in the late 1960’s that
this effect could be attributed to the excitation of surface plasmons [7], the collective
oscillations of free electrons in the metal. The term “plasmon” was introduced shortly
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before by Pines [8]. A plasmon can be defined as a quantum for the collective
oscillation of free electrons, usually at the interface between (noble) metals and
dielectrics. The term plasmon refers to the plasma-like behavior of the free electrons
in a metal under the influence of electromagnetic radiation. Nowadays, due to ever
improving nanofabrication methods, the field of plasmonics is more active than ever
before.

2.2.1 Localized and propagating surface plasmons

Although the term plasmon covers any type of plasma-like oscillation of free elec-
trons, we can distinguish between a few different types. The different types of plas-
mons that can be excited in metallic objects depend on their dimensions. In large
three-dimensional metal structures volume plasmons can exist in the bulk of the
metal. At the interface between metals and dielectrics propagating surface plasmon
polaritons (SPPs) can be excited. Low-dimensional metal structures such as nanopar-
ticles support a wide variety of localized surface plasmon resonances (LSPRs).

Volume plasmons

Volume plasmons are the most fundamental and intrinsic type of plasmon resonance
that can be supported by a metal. These resonances occur at the plasma frequency
of metals ωp, which are transparent to radiation with higher frequencies and non-
transparent to radiation with lower frequencies. The plasma frequency primarily
depends on the electron density:

ω2
p =

Ne2

mε0
(2.47)

in which N is the conduction electron density, e the electron charge, m the effec-
tive optical mass of the electron and ε0 the permittivity of free space. These volume
plasmons are longitudinal modes which cannot be excited by an incident photon, but
only by particle impact [9].

Surface Plasmon Polaritons (SPPs)

At the interface between a metal and a dielectric, propagating solutions of Maxwell’s
equations (2.1) exist, which are so-called surface plasmon polaritons (SPPs). These
collective oscillations of the free electrons in the metal make up dispersive longitudi-
nal waves that propagate along the interface and decay exponentially into both media
(fig 2.12 (a and b)) with typical decay lengths of a few tens of nanometers in the
metal and up to several hundreds of nanometers in the dielectric (depending on the
resonant wavelength). The propagating solutions travel with an in-plane wave vector
kspp (equation 2.49) which defines the dispersion relation in figure 2.12 (c)
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Figure 2.12: Propagating surface plasmon polaritons (SPPs). (a) Charge density oscilla-
tions at the metal/dielectric interface with the associated EM fields. (b) The different decay
lengths of the evanescent field component in the dielectric and metal, depending on the skin
depth. (c) The dispersion relation of an SPP, illustrating its subwavelength confinement and
the momentum mismatch that has to be overcome in order to excite them.

kspp(ω) = ω
c

√

εdεm

εd + εm
(2.48)

in which εm and εd are the permittivity of the metal and dielectric medium [9].
Clearly the dispersion relation lies to the right of the light line in free space ω/c,
which implies that this SPP mode cannot directly be excited by an incident photon.
Only when the dispersion relation of the incident wave and the propagating SPP mode
coincide, an incident photon can excite the SPP mode. To do so, several coupling
mechanisms can be applied, as described in the next section.

Localized Surface Plasmon Resonances

Localized surface plasmon resonances (LSPRs) are the non-propagating counterpart
of SPPs, which can be excited in nanometer-sized subwavelength metallic particles.
The free electron cloud of the nanostructure can be resonantly excited by EM fields
due to enhanced polarizabilities of the particles at certain frequencies. These en-
hanced polarizabilities give rise to strongly enhanced near fields close to the metal
surface, which are often referred to as hot spots.

The simplest structure in which LSPRs can be excited, and for which analytical
solutions of Maxwell’s equations can be obtained is a metallic sphere which was
already treated by Mie in 1908 [4]. This example is very instructional in order to
understand more complex structures, so therefore we will describe the case of the
dipolar plasmon resonance in a metal sphere with a radius a much smaller than the
wavelength of the incident field (a � λ). This allows us to treat this case in the
quasistatic approximation: the electric field over the nanoparticle can be assumed to
be constant, while the wavelength dependence of the permittivity of the metal εm and
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Figure 2.13: Illustration of the dipole polarizability of a spherical metal nanoparticle under
the influence of a plane wave

the surrounding medium εs is taken into account. To solve this problem, we have to
look for solutions of the Laplace equation

∇2Φ = 0 (2.49)

from which the electric field can be calculated by

E = −∇Φ (2.50)

The boundary conditions at the interface between the sphere and the surroundings
require that both the tangential component of the electric field and the normal compo-
nent of the displacement are continuous. The obtained solution for the electric field
consists of a superposition of the applied field E0 and an ideal electric dipole located
at the center of the sphere with dipole moment

p = ε0εsαE0 (2.51)

where α is the complex polarizability of the metal particle [2, 9]:

α = 4πa3 εm − εs
εm + 2εs

(2.52)

From the shape of the denominator, one can see immediately that a resonant be-
havior in the polarizability is expected when |εm+2εs| reaches a minimum. For (noble)
metals at optical frequencies (e.g gold, fig 2.10), the real part of the permittivity is
negative, from which the Frölich resonance condition is obtained [9]:

ε′m(λ) = −2εs (2.53)

When this condition is satisfied, the dipolar LSPR mode in the nanoparticle will
be resonantly excited. The damping of the plasmon resonance depends on the mag-
nitude of the imaginary permittivity, which is reflected in the value of α. For this
simple approximation in the quasistatic limit, the resonance position is independent
of the size of the metal sphere, which is not generally true (see section 2.4). An
other important property of plasmon resonances is reflected in the Frölich resonance
condition: the dependence of the resonance position on the dielectric properties of
the surroundings. When the dielectric constant εs of the surroundings (and thus the



Chapter 2 25

refractive index ns) increases, the resonance position shows a red shift. This principle
is often applied in biochemical LSPR based sensors. On top of that, at the plasmon
resonance there will be a tremendous near-field enhancement of the incident wave,
dipole radiation of the excited dipole and increased scattering and absorption in the
nanoparticle.

For larger and more complex nanoparticles, the quasistatic limit is not valid any
more. For example, in larger structures also higher order modes (quadrupole, oc-
topole, hexadecapole...) can be excited, given that the appropriate conditions are
satisfied. These modes typically show much smaller line widths and much smaller
scattering cross sections due to a largely reduced (or zero for symmetric particles) net
dipole moment. We’ll discuss the excitation and tunability of some of these modes in
the next sections.

2.2.2 Plasmon excitation mechanisms

It was already pointed out in the previous sections that certain conditions apply to the
possibility to excite plasmonic modes with EM fields. The excitation mechanisms are
quite diverse for SPPs and LSPRs and largely depend on the geometry and sizes of
the plasmonic (nano-) structures and the polarization state of the incident wave.

Surface Plasmon Polaritons

From equation 2.49 and figure 2.12 it is clear that the dispersion relation of SPPs
lies to the right of the light line of the dielectric, which implies that direct coupling
to an incident wave is not possible. In order to excite SPPs on a metal film, the
dispersion relation of the incident photon and the SPP should coincide, such that the
quasi momentum ~k and the energy ~ω are conserved, a condition which can only
be fulfilled for incident waves with P-polarization. The matching of the dispersion
relations can be achieved in different ways. In order to bridge the momentum gap 3
methods are used commonly: prism coupling by evanescent waves, diffraction grating
coupling and coupling by surface corrugations (fig 2.14). Next to those, it is also
possible to use focused high-energy beams or near-field coupling using a scanning
near-field optical microscope (SNOM) tip. A more comprehensive overview can be
found in references [9, 10].

In order to be able to excite propagating SPPs it is necessary to obtain phase
matching between the in-plane wave vector of the incident wave along the interface
and the wave vector of the propagating SPP (equation 2.49). We consider an interface
between air and a metal surface, for which the in-plane component along the interface
is determined by the incident angle θ with respect to the surface normal:

kx = k sin θ (2.54)

If we consider a prism coupled to the system described above, the two most
commonly used excitation mechanisms are the Kretschmann (fig 2.14(a)) [11] and
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Figure 2.14: Different coupling mechanisms for SPPs. (a) Kretschmann configuration. (b)
Otto configuration. (c) Grating excitation. (d) Scattering by surface roughness. (e) Dispersion
relations for excitation of plasmons at the air/metal interface by means of prism coupling.

Otto (fig 2.14(b)) [12] configurations. By directing the incident wave through a prism
with a higher dielectric constant εp, the wave vector along the interface is modified to

kx = k
√
εp sin θ (2.55)

which allows to couple to plasmons at the metal/air interface. In this way, SPPs
can be excited with wave vectors in between the free space light line and the prisms
dispersion relation (fig 2.14(e)). Note that the direct coupling to plasmons at the
prism/metal interface can not be achieved in this way. The coupling is based on
total internal reflection (TIR) at the prism interface, which results in tunneling of the
evanescent fields, that can couple to propagating modes at the metal/air interface. The
Kretschmann [11] configuration is used most often, and in that case a thin metal layer
is deposited on top of the prism, and the beam is incident with an angle larger than
the critical angle, such that TIR occurs at the prism/metal interface. The evanescent
fields of the TIR-wave tunnel through the metal layer and excite propagating SPPs at
the metal/air interface. The Otto [12] configuration is fairly similar, but in this case
there is a small air gap between the metal layer and the prism, and the evanescent field
of the TIR-wave tunnels through this air gap in order to excite an SPP mode at the
air/metal interface. In practical applications, the reflected signals are monitored and
show a minimum in the signal at the angle/wavelength where SPP excitation occurs
(see section 2.4.1).

If a grating structure is present on (a part of) the metal film (fig 2.14(c)), diffrac-
tion effects can be used to couple efficiently to propagating SPPs. In this case, the
period of the grating a determines the magnitude of the reciprocal vector of the
grating g:

g =
2π
a

(2.56)
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Wave matching between the incident wave and the excited SPPs can than be
achieved when the following condition is fulfilled

kS PP = k sin θ ± νg (2.57)

in which ν is an integer number. This general formula can be applied for any type
of diffraction grating structure which is defined in or on top of the metal film. These
can include many different features such as stripes, slits, dots, holes etc. In practical
applications, the excitation of SPPs results in a (narrow) minimum in the intensity of
the reflected light. Grating structures can be applied for the reverse process as well,
in order to couple out SPPs into free space again.

Figure 2.14(d) illustrates the excitation of SPPs by means of surface corrugations,
which can occur unintentionally due to undesired effects in sample fabrication, such
as surface roughness and particle contamination. Alternatively, surface corrugations
can be used as a controlled means of SPP excitation, for example by defining a
structure which allows for excitation of LSPRs, which can also couple to propagating
SPP waves on the metal film.

Localized Surface Plasmon Resonances

In the previous section, we already showed how the dipolar plasmon resonance can
be excited in small nanoparticles based on the quasistatic approximation. Although
this model is very instructional for plasmon resonances in general, it doesn’t tell
the full story. If we consider an asymmetric nanoparticle such as a nanodisk with
radius a, and we assume that a = λ/4, then the approximation of a uniform field
over the volume of the particle is no longer generally valid. Therefore we consider
two different polarization states of EM-waves propagating along two of the symmetry
axes of the nanoparticle. For a plane wave that propagates perpendicular to the plane
of the disk (fig 2.15(a)) it is only possible to excite a dipole resonance of which the
dipole moment is aligned with the polarization vector of the incident wave. For a
plane wave propagating in the plane of the disk with the polarization in the plane of
the disk we can couple to the quadrupole (fig 2.15(b)) and the dipole mode of the
disk.

2.2.3 Tunability of plasmon resonances

Plasmon resonances can be tuned in many different ways, depending on the intended
application. As the excitation mechanisms for the different sorts of plasmon re-
sonances differ, we also treat them separately in the next sections.

Surface plasmon polaritons

SPP modes are propagating modes at the interface between a metal and a dielectric,
and therefore they can be considered as modes propagating on a waveguide (in this



28 Chapter 2

(a) (b)

+- +
+
-

-

Figure 2.15: Illustration of the effect of retardation for different polarization states in a disk
particle with radius a = λ/4. (a) A plane wave propagating perpendicular to the plane of the
disk can only excite a dipole resonance. (b) A plane wave propagating in the plane of the disk
with the polarization direction in the plane of the disk can couple to the quadrupole mode in
the disk.

case the metal/dielectric interface) [13]. Depending on the waveguide design, we can
distinguish between long-range SPP waveguides [14] (propagation distances of a few
tens of microns in the VIS up to hundreds of microns in the NIR) and short-range
SPP waveguides [15] (propagation distances limited to tens of microns). The former
typically show very low confinement and small damping, while the latter show very
high confinement but strong damping. The properties of propagating SPPs depend
strongly on the waveguide design and are determined by the dispersion relations of the
materials used and their thicknesses. The propagation behavior can be characterized
by the mode index ne f f of the waveguide, which defines the degree of confinement
and the wave vector of the SPP:

kspp(ω) = ω
c

√

εdεm

εd + εm
=
ω

c
ne f f (2.58)

Clearly, the propagation behavior and mode index depend strongly on the permit-
tivity of both the dielectric and the metal, and the propagation of SPPs for the overall
system can be described using the effective mode index ne f f . As most dielectric
materials show little or no damping, the propagation behavior is mainly dominated by
the properties of the metal layer(s). Typical examples of long-range SPP waveguides
are Insulator-Metal-Insulator waveguides in which the metal layer is thinner than the
skin depth, resulting in very low confined modes with very long propagation distances
[14]. The aforementioned example of the Kretschmann [11] configuration for SPP
coupling also falls in the same class of waveguided modes. Typical examples of
short-range SPP waveguides are Metal-Insulator-Metal (MIM) waveguides in which
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Figure 2.16: The tunability of LSPRs by playing with particle material, size, and shape [13].

the metal thickness is larger than the skin depth, resulting in highly confined modes
with shorter propagation distances [15].

Localized surface plasmon resonances

Localized surface plasmon resonances are highly tunable and allow to confine light
down to deep sub-wavelength dimensions. With increasing dimensions of the nanopar-
ticle, most plasmon resonances show a red shift. The shape of nanoparticles is an
important design parameter which allows to favor the excitation of specific plasmonic
modes. Plasmon resonances are also highly sensitive to the material properties of the
metal and the surrounding dielectric medium. By playing with nanoparticle size,
shape, material and the surrounding medium, localized surface plasmon resonances
can be tuned from the ultraviolet part of the spectrum up to the NIR as illustrated in
figure 2.16 [13].

Interactions between localized surface plasmon resonances

Next to the structural properties of the nanoparticles themselves, the LSPR wave-
length also depends on the interactions with plasmon resonances in neighboring parti-
cles. These interactions can be devided into two sorts: near field coupling for particles
which are separated by a distance smaller than the wavelength of the incident light
and far field coupling for particles that are separated by distances larger than the
wavelength of the incident light. The spectral shifts that are introduced due to these
coupling phenomena depend mainly on phase coherence between the local mode in
one particle and the scattered fields due to modes in the neighboring particles. In case
of near-field coupling, the particles can be considered as simple point dipoles and
longitudinal coupling results in a red-shifted resonance, while transverse coupling
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Figure 2.17: Near-field coupling of electric dipoles in linear arrays of nanoparticles with
transversal (top) or longitudinal (bottom) coupling [9, 16].

results in a blue shifted resonance [16]. For longitudinal coupling, the scattered fields
of the neighboring particles oppose the local resonance and decrease its energy, while
in the transversal case, the scattered fields of the neighboring particles enhance the
local resonance and increase its energy.

For nanoparticles that are spaced further apart, also far-field coupling should be
taken into account. In that case, the length scale on which the interactions con-
tribute ranges up to several microns, and with increasing inter-particle spacing the
plasmon resonance position and its line width show an oscillating behavior for both
polarization states [17].

2.2.4 Phase and amplitude of plasmon resonances

If we consider a simple mechanical system such as a pendulum, it will oscillate
at its eigenfrequency when it is moved from its equilibrium position and released
to move freely. If we consider the same pendulum and drive it with a harmonic
force of which we scan the frequency, we observe that at the eigenfrequency of
the pendulum the amplitude of the oscillation will be maximized. Moreover, if we
measure the phase difference between the applied force and the oscillating pendulum,
we observe a pronounced phase difference (approaching 180o) between in- and out-
of-phase oscillation around the eigenfrequency of the system. The eigenfrequency of
the system depends on the geometrical properties of the pendulum, similar to how the
properties of (propagating or localized) plasmons depend on the size, shape and the
material in which they are excited. In case of plasmon resonances a similar effect can
be observed, where the driving force is the oscillating electric field of the incident EM
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Figure 2.18: Comparison of amplitude and phase signals for an SPR experiment [18].

wave, which triggers the oscillation of the free electrons on the metal surface. If the
wavelength of the incident wave is scanned across the plasmon resonance wavelength,
the electron cloud also makes the transition from in- to out-of-phase oscillation with
respect to the incident wave, which can be experimentally observed.

Surface plasmon polaritons

In the field of SPP-based sensing, substantial efforts have been made in order to
measure the phase of propagating plasmons. The basic approach is to use a com-
bination of P- and S-polarized waves for the excitation, and to measure the phase
difference between the reflected waves using lock-in measurements [18]. The P-
polarized wave can couple to a propagating SPP mode very efficiently, while the
S-polarized wave is reflected without picking up any substantial phase change. In
that way, the transition between in and out-of-phase oscillation of the free electron
cloud could be experimentally observed. The phase difference shows a much smaller
spectral/angular footprint compared to the intensity based signals, as illustrated in
figure 2.18.

Localized surface plasmon resonances

For localized surface plasmon resonances, similar observations were made in recent
years [19], inspired by earlier work in SPR-based sensing. For periodic arrays of gold
nanoparticles, the amplitude and phase based reflection signals were recorded near the
LSPR modes, which show a pronounced phase difference over the center wavelength
of the plasmon resonance. In chapters 4 and 5 we investigate the amplitude and phase
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behavior of both localized and propagating surface plasmon resonances for sensing
applications in more detail.

Phase interference of localized surface plasmon resonances

Next to the phase behavior of individual plasmon resonances, it is also interesting
to look at the interference between different localized modes which show spectral
overlap. In that way it is possible to obtain coupling between bright dipolar modes
and dark higher order modes, which allows to tune plasmon resonances at a higher
level. Dark higher order modes typically have large quality factors, but are complex
to excite, while bright dipolar modes have small quality factors and are easy to
excite. When different nanoparticles are brought close together, it is possible to
achieve interference between the plasmon modes in the individual cavities. In that
way, by appropriate design the bright modes can be used to excite the dark modes,
which gives rise to very interesting phenomena such as Fano-interference and sub-
radiance [20–22], which allows to tune the plasmon line shapes.

2.3 Metamaterials

The term metamaterial was introduced in 1999 by Rodger M. Walser of the University
of Texas (Austin). He defined metamaterials as “macroscopic composites having a
manmade, three-dimensional, periodic cellular architecture designed to produce an
optimized combination, not available in nature, of two or more responses to specific
excitation”. By now, this definition is a bit outdated, as the field of metamaterials
has evolved tremendously over the past decade. A better definition would be “Man-
made artificial materials with a response not readily available in nature which gain
their properties from their structural composition rather than their atomic compo-
sition”. In that sense, any engineered structure such as an IC could be considered
as a metamaterial, but usually the term refers to “optical metamaterials” which are
artificial materials with an engineered response to EM-waves. This artificial response
is obtained from the sub-wavelength sized building blocks or metamaterial atoms,
which can be ordered randomly or in a periodic fashion, in order to obtain the desired
effective medium response of the metamaterial.

The birth of the field of metamaterials dates back to a seminal paper by Victor
Veselago [23] from 1968 in which the electromagnetic response of a material with
simultaneously negative values for the electric permittivity ε and the magnetic per-
meability µ was described theoretically. Veselago pointed out that such a material
would have a negative refractive index n, and therefore a flat slab of such a material
would act as a lens. As such a material was not known to exist at the time, the
concept raised a lot of skepticism, until it was picked up in 2000 by John Pendry [24]
who pointed out that the flat lens proposed by Victor Veselago would also have non-
diffraction-limited resolution. Around the same time the first negative index material
(NIM) for microwave frequencies was demonstrated [25], which soon would lead to
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many new designs that would allow to obtain NIMs for frequencies up to the visible
range.

2.3.1 Negative Index Materials (NIMs)

In this section the theoretical description for NIMs is given based on the Veselago [23]
and Pendry [24] papers. The electric permittivity ε and the magnetic permeability µ
are assumed to be purely real and negative numbers. For the theoretical description
of such a material we start from the constitutive Maxwell equations

D = εE ∇ × E = − ∂B
∂t

B = µH ∇ × B = ∂D
∂t

(2.59)

We consider a homogeneous plane wave which propagates in an isotropic slab
of material with εr = µr = −1 (here εr and µr are the relative permittivity and
permeability with respect to the vacuum values, such that ε = ε0εr and µ = µ0µr)
for which the propagation behavior is described by

k2 =
ω2

c2 n2 (2.60)

with n2 = εrµr. We consider a plane wave propagating in the positive z-direction
so the field amplitudes show a ei(kz−ωt)-dependence. By substitution into equations
2.60, these are reduced to

k × E = ωµ0µrH k ×H = −ωε0εrE (2.61)

From these equations we can see that a simultaneous change of the sign of εr and
µr changes nothing to this generalized solution of Maxwell’s equations. Moreover it
shows that for negative values of εr and µr, the triplet of vectors k, E and H form a
left-handed system of reference, which is why Veselago named these materials left-
handed materials (LHM). From the definition of the refractive index n2 = εrµr we see
that there are two possible choices for the sign of n, and the correct solution is dictated
by causality. If we assume that a plane wave is propagating in the positive z-direction
in a lossy LHM, then the complex values of the permittivity and permeability can be
written as

εr = |εr |eiα µr = |µr |eiβ (2.62)

while the refractive index in given by n =
√

|εrµr |eiγ where γ can take the value
(α+ β)/2 or (α+ β)/2+ π. As we consider a plane wave propagating in a lossy LHM,
the wave should decay in the positive z-direction. This can only be achieved when
Im(n) > 0, which fixes the choice of the sign for Re(n) to be negative, as illustrated
in figure 2.19.

The direction of the energy flow in a LHM is given by the Poynting vector S
(equation 2.15). Due to the presence of the vector product of E and B, the Poynting
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Figure 2.19: Choice of the appropriate sign of the refractive index for a LHM in the complex
plane. Given the lossy nature of the material, the wave should decay as it propagates, which
implies that Im(n) > 0 and fixes the choice for Re(n).

vector S and the wave vector k are aligned anti-parallel, contrary to conventional
right-handed materials (RHM). As a consequence, in a LHM the phase velocity νp

(equation 2.46) is aligned anti-parallel to the energy flow and to the group velocity νg

(equation 2.47). This implies that the direction of the energy flow in LHM and RHM
is the same, but the wave fronts travel in opposite directions.

The propagation behavior of EM-waves in LHMs discussed above was allready
descibed by Veselago in 1968 [23], but in 2000 Pendry [24] pointed out that a NIM
can also cancel out the exponential decay in amplitude of evanescent waves, allowing
to use it as a perfect lens. We consider a slab of LHM in vacuum with thickness
d and permittivity εr = −1 and permeability µr = −1 (figure 2.21) and derive the
propagation behavior for a S-polarized evanescent wave travelling in the positive (+)
z-direction. The incident wave can be descibed as follows

E0,+ = Ey,0eikzz+ikx x−iωt (2.63)

with kz = i
√

k2
x + k2

y − ω2c−2 and ω2/c2 < k2
x + k2

y such that the wave decays
exponentially in the propagation direction. At the first interface between the LHM
and the surroundings, part of the light will be reflected (E0,−), and part of the light
will be transmitted (E1,+)

E0,− = rsEy,0e−ikzz+ikx x−iωt (2.64)

E1,+ = tsEy,0eik
′
z z+ikx x−iωt (2.65)

where the choice of k
′

z = i
√

k2
x + k2

y − εµω2/c2 and εµω2/c2 < k2
x + k2

y is defined
by causality as the wave should decay as it propagates away from the source. The
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Figure 2.20: Illustration of phase and group velocity for a wave packet traveling in a LHM.
While the pulse and energy propagate to the right, the wavefronts (indicated by a red dot)
propagate in the opposite direction.
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transmission and reflection coefficients at the interfaces are given by the Fresnel
equations (equations 2.34 and 2.36), which for the S-polarized case reduce to

ts =
2µrkz

µrkz+k
′
z

rs =
µrkz−k

′
z

µrkz+k
′
z

t
′

s =
2k
′
z

k
′
z+µrkz

r
′

s =
k
′
z−µrkz

k
′
z+µrkz

(2.66)

where ts and rs are the coefficients for the vacuum-NIM interface and t
′

s and r
′

s
are the coefficients for the NIM-vacuum interface. The overall transmission and re-
flection coefficients T s and Rs can be obtained by calculating the sum of all scattering
events

Ts = tsts
′eik

′
z d + tsts

′r
′2
s e3ik

′
z d + tsts

′r
′4
s e5ik

′
z d + ... =

tsts
′eik

′
z d

1 − r′2s e2ik
′
z d

(2.67)

The actual transmission and reflection is calculated by taking the limit for εr →
−1 and µr → −1 which yields

lim
εr ,µr→−1

Ts =
tsts
′eik

′
z d

1 − r′2s e2ik
′
z d
= e−ik

′
z d = e−ikzd (2.68)

Which shows that the wave travels through the medium without experiencing any
decay. For the reflection we can make a similar derivation which yields that the
overall reflection equals zero.

lim
εr ,µr→−1

Rs = lim
εr ,µr→−1

rs +
tsts
′r
′

se
2ik
′
z d

1 − r′2s e2ik
′
z d
= 0 (2.69)

A similar derivation can be made for P-polarized waves by exchanging εr and µr in
equations 2.67. This means that for a flat slab of a LHM which is perfectly impedance
matched to the surroundings, any wave with an arbitrary polarization state will be
transmitted without any decay. The amplification of the amplitude of evanescent
waves does not violate energy conservation, as evanescent waves do not transport
energy. This was the main conclusion from the paper by Pendry as it proves that both
low- and high-frequency components of an image can travel through a NIM without
any decay, resulting in a perfect lens.

In conventional optical systems, the high-frequency components which make up
the smallest details of an object are evanescent in nature and decay exponentially with
the distance from the source. Therefore these high-frequency components are lost
in the image plane, and the resolution of a conventional lens is diffraction limited.
The smallest distance between two points in the object plane (∆x) which can be
distinguished in the image plane is given by

∆x ≈ λ

NA.n
(2.70)
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(a)

(b)

Figure 2.21: Illustration of a NIM as perfect lens. All frequency components can travel
through the lens without any decay. (a) Ray-tracing picture of imaging by a NIM lens (red
lines) and comparison with a conventional lens (dotted blue lines). The image of the object
is focussed once inside the lens and once in the image plane. (b) Illustration of enhancement
of evanescent waves in a NIM (red lines) compared to the decay in a conventional lens (blue
dotted lines).
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in which λ is the illumination wavelength, NA is the numerical aperture of the
optical system and n the refractive index. For a NIM lens all components can travel
without any decay, which implies that inside the NIM the evanescent waves are
amplified in order to allow for transmission to the image plane without any losses
(figure 2.21(b)).

2.3.2 Effective material parameters

Metamaterials are often described in terms of effective material parameters such
as permittivity εe f f , permeability µe f f , refractive index ne f f and impedance Ze f f .
These parameters describe the propagation properties of EM-waves through meta-
materials by treating them as an effective medium. The metamaterial is considered
as a homogeneous material (in the propagation direction) which implies that the
metamaterial atoms or building blocks should be deep sub-wavelength in order for
this approximation to be valid. In fact, this criterion is often used to discriminate
between photonic crystals (a ≈ λ) and metamaterials (a � λ) in function of the unit
cell dimension a.

For optical metamaterials the effective parameters can be deduced from measure-
ments or simulations in which both the amplitude and phase information of reflected
and transmitted waves are recorded. The experimental extraction of these para-
meters is rather cumbersome for VIS and NIR metamaterials, but it is possible to
extract both phase and amplitude by interferometric measurements [26]. In this
thesis we performed effective parameter extraction based on finite element simula-
tions and compared the simulated far-field transmission and reflection spectra with
the measurement results. The homogenization step is performed by averaging out
the electric and magnetic field amplitudes over one unit cell of the metamaterial
and calculating the complex transmission and reflection coefficients at each side of
the metamaterial [27]. In case of bi-anisotropy in the propagation direction, the
effective parameters were extracted through a modified protocol [28] in which the
transmission and reflection coefficients are extracted for illumination from both sides
of the metamaterial layer. The values for the refractive index n and impedance Z
are calculated by inversion of the scattering parameters (S parameters), the complex
reflection and transmission coefficients.

We start from a homogeneous 1D slab of metamaterial with a thickness d and
consider the transmission and reflection in terms of the transfer function which relates
the transmitted and reflected waves to the incident wave according to

F′ = TF (2.71)

where
F =

(

E
Hred

)

(2.72)

with E and Hred the electric and magnetic field amplitudes of the incident wave
(F) and the transmitted wave (F′). Here we use the reduced magnetic field which is
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the normalized magnetic field according to Hred = iωµ0H [29]. For an isotropic slab
of material the transfer matrix can then be written as

T =
(

cos(nkd) − Z
k sin(nkd)

k
Z sin(nkd) cos(nkd)

)

(2.73)

In practical applications we don’t have direct access to the components of the
transfer matrix T but to the scattering parameters (S-parameters) in the scattering
matrix S

S =
(

S 11 S 12
S 21 S 22

)

(2.74)

which can be related to the parameters of the T-matrix [27] by

S 11 =
T11−T22+(ikT12−

T21
ik )

T11+T22+(ikT12+
T21
ik )

S 12 =
2|T|

T11+T22+(ikT12+
T21
ik )

S 21 =
2

T11+T22+(ikT12+
T21
ik )

S 22 =
T22−T11+(ikT12−

T21
ik )

T11+T22+(ikT12+
T21
ik )

(2.75)

where S 11 and S 21 are the complex reflection and transmission coefficients for
incidence from the top and S 22 and S 12 are the complex reflection and transmission
coefficients for incidence from the bottom, which are extracted from two separate
experiments or simulation runs.

Isotropic materials

For an isotropic material T11 = T22 = Ts and |T| = 1 (equation 2.74), such that the
S-matrix is symmetric:

S 11 = S 22 =
1
2 ( T21

ik −ikT12)
TS+

1
2 (ikT12+

T21
ik )

S 12 = S 21 =
1

TS+
1
2 (ikT12+

T21
ik )

(2.76)

By substituting the T-matrix elements from equation 2.74 we obtain the relation-
ship between the S-parameters and n and Z

S 11 = S 22 =
i
2 ( 1

Z − Z) sin(nkd)

S 12 = S 21 =
1

cos(nkd)− i
2 (Z− 1

Z ) sin(nkd)
(2.77)
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If all of the S-parameters are known, the equations above can be inversed in order
to obtain n and Z

n = 1
kd cos−1[ 1

2S 21
(1 − S 2

11 + S 2
21)]

Z =

√

(1+S 11)2−S 2
21

(1−S 11)2−S 2
21

(2.78)

In order to obtain physically sound values for the refractive index and impedance,
the right branch of the cosine function has to be selected, bearing in mind that for
passive materials, both Im(n) > 0 and Re(Z) > 0 should be fulfilled. The relative
permittivity and permeability can subsequently be calculated from

εr =
n
Z µr = nZ (2.79)

which are complex functions of the wavelength.

Bi-anisotropic materials

When the metamaterial is not isotropic in the propagation direction, the S-matrix is no
longer symmetric as the reflected and transmitted signals are different for illumination
from the top or bottom. The S-parameters from both experiments are used in order to
construct the overall T-matrix for the anisotropic metamaterial:

T11 =
(1+S 11)(1−S 22)+S 21S 12

2S 21

T12 =
(1+S 11)(1+S 22)−S 21S 12

2S 21

T21 =
(1−S 11)(1−S 22)−S 21S 12

2S 21

T22 =
(1−S 11)(1+S 22)+S 21S 12

2S 21

(2.80)

For anisotropic metamaterials, the obtained values of the refractive index n are
different for both propagation directions and these 2 values are very similar to equa-
tion 2.79

n1 =
1
kd cos−1[ 1

2S 12
(1 − S 2

11 + S 2
12)]

n2 =
1
kd cos−1[ 1

2S 12
(1 − S 2

22 + S 2
12)] (2.81)

while an overall effective refractive index ne f f can be defined by replacing S 11 or
S 22 in the equations above by an average S-parameter S av =

√
S 11S 22 such that
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ne f f =
1
kd

cos−1[ 1
2S 21

(1 − S 2
av + S 2

21)] (2.82)

The impedance is also different for both propagation directions and can be defined
in terms of the T-matrix elements (equation 2.81)

Ze f f =
(T22 − T11) ±

√

(T22 − T11)2 + 4T12T21

2T12
(2.83)

where the choice of the sign determines the different propagation directions. The
extracted effective values for the refractive index and impedance are to be found
in between the effective values obtained for top and bottom incidence without bi-
anisotropy correction, as defined by equation 2.78.

2.3.3 Plasmonic metamaterial building blocks

Many of the plasmonic metamaterial atoms originated from the original attempts to
realize NIMs at lower frequencies, for example in the microwave range. Researchers
were trying to realize a material with simultaneously negative values for the electric
permittivity ε and the magnetic permeability µ. The first realization of a NIM [25]
consisted of two seperate structures that governed a negative electric and a nega-
tive magnetic response at an operational frequency of 10.5 GHz (figure 2.22). The
negative electric response was realized by an array of parallel wires that act as a
diluted plasma, while the negative magnetic response was induced by using split-ring
resonators (SRRs), in which magnetic resonances can be excited. The SRRs can be
seen as subwavelength LC-circuits: the ring behaves like a coil while the slit behaves
as a capacitor.

(a) (b) (c)

Figure 2.22: First experimental realization of a NIM. (a) Picture of the NIM structure
consisting of metallic wires and split-ring resonators. (b) Experimental setup to verify the
negative value of the refractive index of a prism structure by Snell’s law. (c) Angle dependent
transmission through a NIM prism and a conventional prism strucutre. [25]

In initial attempts to realize NIMs at higher frequencies, the SRRs were shrunk
down to the limiting sizes that could be achieved with e-beam lithography, resulting
in the first plasmonic NIMs in the NIR [30, 31]. These metamaterials obtained their
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negative magnetic response from LC-resonances, while the negative electric response
is governed by the intrinsic material properties of the metals in the NIR. The first truly
3D metamaterials in the NIR were also realized by means of multilayers of stacked
SRRs [32, 33]. Soon it was realized that further downscaling of conventional SRRs
would lead to saturation of the magnetic resonance [34, 35], and new metamaterial
atoms were proposed in order to push negative magnetic responses into the visible
wavelength range. The saturation frequency can be increased by introducing more
splits in a classical SRR [35], which is one of the paths that was pursued by different
research groups simultaneously, resulting in new metamaterial atoms such as double-
wire pairs [36, 37]. The next generation of NIMs emerged shortly afterwards and
consisted of metal-insulator-metal (MIM) layers, perforated by a periodic array of
holes, the so-called double fishnets [38–41]. The double fishnets are one of the most
widely studied classes of NIMs for which negative refraction at NIR wavelengths
could be experimentally verified [42]. In chapter 3 we discuss a self-assembly based
version of a double fishnet NIM.

Figure 2.23: Evolution of the scaling of NIMs. The different colors in the plot indicate the
different metamaterial atoms used: Orange for double SRRs, Green for U-shaped SRRs, Blue
for pairs of wires and Red for double fishnet materials [43].

In recent years, the focus of the metamaterial community has diverged into several
new areas such as chiral metamaterials (allowing to control the polarization state
of light) and transition optics (slowing down light, invisibility cloaking), which use
many different metamaterial atom designs. An overview of recent developments is
beyond the scope of this thesis but can be found in reference [43].
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2.4 Plasmonic biosensors

Plasmonic devices consist of nanometer and micrometer sized particles and surfaces,
which are comparable in size to many biological substances such as cells, anti-bodies,
anti-gens and even DNA. Therefore plasmonic sensors offer a good platform to inter-
face with bio-molecules as the typical decay lengths of the enhanced fields are of the
same order as the investigated molecules. The plasmonic structures can be fabricated
in bio-compatible materials such as Gold (Au), Silica (S iO2) and Silicon (S i), which
makes them suitable for in-vitro and in-vivo applications. On top of that, different
mature types of chemical functionalizations can be applied on these materials in order
to make the sensors specific to the desired analyte molecules.

2.4.1 Surface Plasmon Polariton (SPP) sensing

SPP sensing is one of the most widely spread plasmon based commercial platforms
[44] in life sciences. The sensing principle is illustrated in figure 2.24. The analyte
solution flows through a channel which is in contact with a (functionalized) gold
surface. A P-polarized beam excites plasmons on the gold surface by SPP coupling in
the Kretschmann [11] configuration. Two configurations are typically used: (1) The
wavelength is fixed while the angle of incidence is scanned (angular approach); (2)
The angle of incidence is fixed while the wavelength is scanned (spectral approach);
In both cases, a dip in the reflection spectrum is observed at the angular/spectral
position where SPPs are excited. These propagating SPPs are prone to changes in
the dielectric environment and as a result an angular/spectral shift will be observed
for changes in the analyte solution or binding events at the gold surface. Typically
with increasing concentration of the analyte or upon binding events on the gold layer,
(local) refractive index is increased, resulting in a shift of the spectral/angular position
to larger values. The electric field of the propagating SPP decays exponentially
with the distance from the gold surface, with typical decay lengths of a few 100
nanometers. Therefore SPP-based sensors are sensitive to concentration changes in
the bulk and to binding events at the gold surface.

As outlined in section 2.2.4 it is possible to measure both the intensity and phase
of the SPP resonance (see fig 2.24(b)), and the resulting line widths differ tremen-
dously, allowing to reach detection limits which are 2 orders of magnitude smaller
for phase-based SPR sensing [18].

2.4.2 Localized Surface Plasmon Resonance (LSPR) sensing

Localized surface plasmon resonances are highly susceptible to their dielectric envi-
ronment and show pronounced red-shifts of the plasmon resonance as the refractive
index of the surrounding medium is increased. Due to the strong confinement of
LSPRs, the field enhancement around the plasmonic structure is limited to the near
field, with decay lengths in the order of a few tens of nanometers (depending on the
resonance wavelength and the nanostructure itself). Therefore LSPR-based sensors
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(a) (b)

Figure 2.24: (a) Schematic overview of an SPP sensing experiment. (b) Example of a
measurement for an SPP-based sensor showing both intensity and phase based signals in
configuration (1). [18].

are only sensitive to changes in the immediate environment of the nanoparticles and
less sensitive to bulk refractive index changes than SPP-based sensing platforms.
The sensor response is largely dominated by “hot-spots”, the regions around the
nanostructures where the field enhancements are maximized. In optimizing the sen-
sor performance, it is important to maximize the sensing volume [22, 45] and the
contact area with the sensing solution, as these parameters determine the final sensor
sensitivity.

Figure 2.25: Schematic overview of an LSPR sensing experiment on a gold nanodisk. The
extinction spectra are shown for the bare gold nanodisk (1), the disk functionalization with a
self-assembled monolayer (SAM)(2), antibodies coupled to the SAM (3) and antigens captured
by the antibodies (4).
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A recent review on LSPR based sensing platforms can be found in reference [46].

2.4.3 Characterization of sensor performance

In this section we introduce the most important parameters that quantify the sensor
performance for plasmonic sensors based on refractive index changes. Some of
these parameters are inherent to the plasmonic structure, while others show a strong
dependence on the surface functionalization and the chemical reactions that take place
in (bio-) sensing experiments.

The tunability of plasmon resonances (section 2.2.3) can be exploited in optimi-
zing the sensor performance. The intrinsic properties of the plasmon resonance play
a key role in the efficiency of the sensor for practical applications. The geometric
design of the plasmon resonator determines the position of hot spots and its acces-
sibility for the analyte solutions. A proper design of the plasmonic structure results
in high values for the sensitivity (S): the observed red shift of the plasmon resonance
(∆λres) per refractive index unit (RIU), which is given in units of nm/RIU.

S =
∆λres

∆n
(2.84)

The sensitivity largely depends on the nanostructure and takes different values for
different plasmonic modes. Larger values for S are expected for plasmon resonances
at at longer wavelengths. Each plasmonic mode is also characterized by a certain line
width (Γ) which is defined as the full width at half maximum value of the plasmon
line shape. The line width is a measure for the damping of the plasmon resonance,
which depends strongly of the nature of the plasmon resonance. Dipolar modes
radiate strongly and the resulting line widths are broad while dark higher order modes
radiate less and the resulting line widths are much more narrow. As the line width
also strongly depends on the resonant wavelength, a quality factor (Q-factor) of the
resonance is introduced, which is given by the ratio of the resonant wavelength and
its width.

Q =
λres

Γ
(2.85)

The value of the Q-factor determines the line width of the plasmon resonance
(relative to its spectral position) and higher Q-factors allow to observe smaller spectral
shifts of plasmon resonances with increased accuracy. Therefore in terms of sensing
the sensor performance is often expressed in a Figure Of Merit (FOM), which relates
the line width to the sensitivity of the sensor.

FOM =
∆λres

∆n

Γ
(2.86)

The FOM is in general a good measure for the intrinsic sensor performance, and
higher FOM values allow a more accurate determination of the resonance position,
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which implies that smaller spectral shifts can be observed. The smallest refractive
index change (∆n) that can be observed with the sensor, which is called the detection
limit (DL) and expressed in RIUs.

2.4.4 Surface functionalization

The typical dimensions of plasmonic structures are matched pretty well with the sizes
of biological molecules, cells and even DNA, which makes them really useful for
biological sensing applications. It is critical to bring the analyte molecules in the
vicinity of the plasmonic sensors in order to obtain accurate measurement results. To
that extent, chemical functionalization of the plasmonic structures is very important to
obtain the best possible interfacing properties between the sensors and the analytes.
The typical sample structures used in this thesis are fabricated in gold and silica,
which can both be chemically functionalized. Gold surfaces show a high affinity
for thiol (SH-groups) [47] while silica and silicon surfaces show a high affinity for
silane (Si-O-groups) [48]. Both thiol and silane based chemistry can be exploited
to form self-assembled monolayers (SAMs) on gold and silicon-based structures
with nearly perfect sample coverage. These SAMs can be tailored at will for a
specific application: one side is designed to realize the coupling with the sensor
surface, while the other can be tailored to couple analyte molecules or antibodies (bio-
functionalization). Typically the molecules making up the SAM consist of two func-
tional end-groups and a (long) chain of atoms in between them which can form Van-
Der-Waals bonds with the neighboring SAM molecules, resulting in rather densely
packed monolayers on the functionalized substrates. For most applications the SAMs
are formed upon exposure of the samples to a solution of the SAM molecules which
can then self-assemble onto the sample surface.

2.4.5 Other types of plasmonic biosensors

Next to refractive index based plasmonic biosensors the most promising application
is surface-enhanced Raman spectroscopy (SERS) [49]. In SERS the strong field
enhancement of plasmonic resonances is exploited to enhance Raman signals of
molecules bound to or in the vicinity of the surface of a nanostructure. The major
advantage of SERS is that it is a label-free technique in which the obtained spectrum
yields a molecular footprint containing Raman peaks that are specific to the molecule
that is detected. Due to the strong local field enhancements near plasmonic structures
the sensitivity can go down to the single-molecule level.

2.5 Spectroscopic ellipsometry

Spectroscopic ellipsometry is a common technique in material sciences which is used
to determine the optical properties of transparent layers and thin metallic layers. The
angle- and polarization dependent reflection and/or transmission of a layered structure
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is recorded and fitted to a theoretical model. In that way the thickness, refractive
index (permittivity) and roughness of the investigated layer(s) can be deduced. A
schematic overview of reflection based ellipsometry is presented in figure 2.26. The
polarization of the incident wave is modulated between P and S by a rotating polarizer
(section 2.5.3) or a photo-elastic modulator (section 2.5.4). By performing lock-
in measurements at the modulation frequency, both the amplitude and phase of the
reflected beam are recorded for the two polarization states.

Figure 2.26: Schematic overview of spectroscopic ellipsometry measurements. A linearly
polarized plane wave is converted into an elliptically polarized wave upon reflection from the
sample. [50]

At the interfaces between the different layers in the sample, the reflection for P-
and S-polarized waves is determined by the Fresnel reflection coefficients (equations
2.34 and 2.36),which are in general complex numbers. Therefore, upon reflection
at each interface, the amplitude and phase of the reflected wave are different for the
two polarization states, resulting in an elliptically polarized wave. This explains the
name spectroscopic ellipsometry: the polarization ellipse of the sample is measured
for different wavelengths, such that the optical properties of the investigated sample
can be quantified.

2.5.1 Measured quantities

The polarization ellipse (figure 2.27) of an EM wave can be described in differ-
ent reference frames, depending on the application. For spectroscopic ellipsometry
measurements the polarization state is usually decribed in terms of tanΨ and cos∆.
These numbers represent the amplitude ratio between the reflected P- and S-polarized
waves (tanΨ) and the phase difference (∆) between them (figure 2.26). The relation-
ship between these two parameters and the sample response is given by the main
equation of ellipsometry

ρ =
rp

rs
=

Er,p

Ei,p

Er,s

Ei,s

= tanΨei∆ = tanΨ(cos∆ + i sin∆) (2.87)

The value of tanΨ describes the amplitude ratio between P- and S-polarized
waves, while their phase difference ∆ determines the polarization state. For positive
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values of ∆ the polarization vector rotates right-handed while for negative values of
∆ it rotates left-handed as the wave propagates.

Figure 2.27: The polarization ellipse is confined to the square defined by the electric field
magnitude along the X and Y directions, which are equal in this example (tanΨ = 1). For
changing values of the phase differences δy−δx the wave has a different polarization state. The
respective states are: linearly polarized at 45o, elliptically polarized (right), right circularly
polarized, elliptically polarized (right), linearly polarized at −45o, elliptically polarized (left),
left circularly polarized and elliptically polarized (left). [50]

An alternative representation of the ellipsometric parameters can be given in terms
of the ellipticity ε = tan γ and the rotation angle θ, which are not used that often in
terms of spectroscopic ellipsometry. These quantities are mainly used for magneto-
optic Kerr effect (MOKE) measurements in which the magnetic properties of a sample
are investigated by means of polarized light. The tangent of the ratio between the long
and short axis of the polarization ellipse gives the ellipticity ε while the orientation
of the long axes with respect to the incident wave is given by a rotation angle θ.
In MOKE measurements the anisotropy introduced by the external magnetic field is
quantified such that switching of the magnetization upon changes in the direction and
amplitude of the external magnetic field can be observed. The two representations
can be used interchangeably and the main advantage for (ε, θ) over (Ψ,∆) is that the
ellipticity ε describes the polarization state in the most general way, independent of
the frame of reference. The relationships between them [51] are given by equations
2.89 and can be deduced directly from the Stokes parameters. In the remainder of
this thesis, we will mainly refer to ellipsometric parameters in terms of (Ψ,∆).
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Figure 2.28: The polarization ellipse with the ellipsometric angles Ψ, γ and θ.

Ψ = tan−1
√

1+tan2 θ tan2 γ
tan2 θ+tan2 γ

Ψ ∈< 0, π2 >

∆ = 2 tan−1
√

cos2 2γ cos2 2θ−sin2 2θ cos2 2γ
sin 2γ ∆ ∈< −π, π >

θ = tan−1 sin 2Ψ cos∆√
1−sin2 2Ψ sin2 ∆−cos 2Ψ

θ ∈< −π2 ,
π
2 >

γ = 1
2 tan−1 sin 2Ψ sin∆√

1−sin2 2Ψ sin2 ∆
γ ∈< −π4 ,

π
4 >

(2.88)

2.5.2 Mathematical description of polarized light

Complex optical systems can be described by means of the Jones and Mueller/Stokes
matrix formalism, in which each optical component of the system is described by
a characteristic matrix. The total transmission through an optical setup is given by
the matrix product of all matrices with the polarization vector of the incident wave.
The Jones matrix formalism consists of 2x2 matrices for optical components and 2-
component Jones vectors, while the the Mueller/Stokes formalism consists of 4x4
Mueller matrices in conjunction with 4-component Stokes vectors. The Jones matrix
formalism allows to describe all the polarization states discussed before, but does not
allow to describe unpolarized light. The Mueller/Stokes formalism is more advanced
and allows to describe any possible (partial) polarization state. For spectroscopic
ellipsometry measurements the Jones formalism is sufficient, as only linear, circular
and elliptical polarization states are used. We’ll briefly introduce the Mueller/Stokes
formalism as well, as the four Stokes parameters S 0 − S 3 are measured in a spectro-
scopic ellipsometry measurement.
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Jones vectors

In section 2.1.2 we introduced the different polarization states of light, which all can
be described by their Jones vector. Let’s assume an EM wave which is propagating
in the z-direction and which can be written as a superposition of two plane waves
oscillating in the x- and y-directions with frequency ω

E(z, t) =
(

Ex,0ei(ωt−kzz+δx)

Ey,0ei(ωt−kzz+δy)

)

= ei(ωt−kzz)
(

Ex,0eiδx

Ey,0eiδy

)

(2.89)

Usually the term ei(ωt−kz) is dropped

E(z, t) =
(

Ex

Ey

)

(2.90)

In which Ex and Ey can be written as the product of the amplitude and phase of
the electric field along the x- and y-directions

Ex = |Ex|eiδx

Ey = |Ey|eiδy (2.91)

The electric field components can be rewritten in function of the phase difference
δx − δy

Ex = Ex,0ei(δx−δy) = |Ex|ei(δx−δy)

Ey = Ey,0 = |Ey|
(2.92)

while the total field intensity is given by

I = Ix + Iy = E2
x,0 + E2

y,0 = |Ex|2 + |Ey|2 = ExE∗x + EyE∗y (2.93)

As we are only interested in the relative phase and amplitude for the different
components, the intensity I is usually normalized such that I = 1. Therefore we can
write the linear polarization states along the x- and y-axis as

Elin,x =

(

1
0

)

Elin,y =

(

0
1

)

(2.94)

For any linear polarization state which makes an angle Ψ with the x-axis, the
general Jones vector is given by

Elin,Ψ =

(

sinΨ
cosΨ

)

(2.95)

For the circular polarization states the phase difference between Ex and Ey is π/2,
from which we can write the normalized Jones vectors as

Ecirc,right =
1√
2

(

1
i

)

Ecirc,le f t =
1√
2

(

i
1

)

(2.96)
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The most general shape of polarization is the elliptical polarization for which the
main axis of the polarization ellipse rotated with an angleΨwith respect to the x-axis,
which can be written as

Eellipt,Ψ =

(

sinΨei(∆)

cosΨ

)

(2.97)

Jones matrix

Optical components can be described in terms of their Jones matrix, which character-
izes their polarization dependent optical response. In this section we give an overview
of the different components which are relevant to describe ellipsometry measurements
in the different configurations used throughout this thesis.

Linear polarizers are used in the different types of ellipsometry setups both on
the incident side as polarizer (P) and at the detection side as analyzer (A). A linear
polarizer with the its transmission axis along the x-direction is described by

P(0o) = A(0o) =
(

1 0
0 0

)

(2.98)

For a polarizer under an arbitrary angle φ with respect to the x-axis, the resulting
matrix can be calculated by using the rotation matrix R(α).

R(φ) =
(

cos φ − sin φ
sin φ cos φ

)

(2.99)

If a complex optical system such as an ellipsometry setup is described, different
rotation matrices have to be introduced in order to describe the overall optical res-
ponse of the setup, as the different components are usually rotated with respect to the
optical axes of the previous component.

The response of a sample can be described by the complex reflection and trans-
mission parameters given by the Fresnel equations, which are related to each other by
the ellipsometric angles Ψ and ∆ that appear in the sample matrix S

S =

(

sinΨei∆ 0
0 cosΨ

)

(2.100)

This matrix can be deduced immediately from the definitions of tanΨ and ∆, if
we define the x-direction as the P-axis and the y-direction as the S-axis in figure 2.26:

tanΨ = sinΨ
cosΨ =

|rp|
|rs|

(2.101)

The phase difference between the P- and S-polarized waves is defined as ∆ =
δx − δy = δp − δs as introduced by equation 2.93. As an example we show the full
description of figure 2.26 in Jones matrices
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(

Er,p

Er,s

)

=

(

sinΨei∆ 0
0 cosΨ

) (

Ei,p

Ei,s

)

=

(

sinΨei∆Ei,p

cosΨEi,s

)

(2.102)

from which we can see that a linearly polarized wave (at 45o) is converted into
an elliptically polarized wave upon reflection from the sample. To measure the
phase difference ∆ in practical applications, we need to apply a modulation of the
polarization, in order to perform lock-in measurements at the modulation frequency
ω. Two types of modulation are used most often: a polarizer rotating at a frequency ω
(section 2.5.3) or a photo-elastic modulator oscillating at frequency ω (section 2.5.4).

For a rotating linear polarizer, the Jones matrix is expressed as function of the
polarizer angle α = ωt and it is given by the product of R(α) and a linear polarizer
matrix (equation 2.99).

A photo-elastic modulator consists of a fused quartz crystal to which two elec-
trodes are connected. An oscillating electric field is applied to these electrodes at
50kHz, which corresponds to the resonant oscillation frequency of the piezo trans-
ducer. The modulation of the crystal introduces stress into the dielectric material
which changes the electron density along the stress direction. This effect introduces
anisotropy in the crystal, which gives rise to a phase difference between light waves
that pass through the crystal with a polarization along or perpendicular to the stress
direction. The introduced phase difference is time-dependent and is given by

δ = F sin(ωt) (2.103)

where ω = 2πν with ν = 50kHz. F is the phase amplitude and is proportional
to V/λ with V the applied voltage to the crystal and λ the wavelength of the incident
light. In a spectroscopic ellipsometry measurement δ is kept constant for different
wavelengths by adjusting the applied voltage to the wavelength. The Jones matrix of
a PEM is given by

(

1 0
0 eiδ

)

(2.104)

Stokes parameters

Although the Jones formalism provides a very elegant means to describe polarized
light, it does not provide the possibility to define partially polarized or unpolarized
light. These polarization states can be described by means of Stokes parameters (S 0−
S 3), which make up a 4-component vector. Similar to the Jones matrices defined
before, Mueller matrices can be used to describe any optical component and in that
way to fully describe an optical setup. For the systems used in this thesis we can
describe all properties in terms of Jones matrices, so therefore we only introduce the
Stokes parameters here, as they are the parameters that come out of an ellipsometry
measurement. If we consider waves with a polarization vector along the x- and y-
direction, the corresponding Stokes vectors are given by
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(a) (b)

Figure 2.29: (a) Schematic overview of a PEM. (b) Illustration of the polarization states
during one modulation cycle with the peak retardation λ/2.

S 0 = Ix + Iy

S 1 = Ix − Iy

S 2 = I+45o − I−45o

S 3 = Icirc,right − Icirc,le f t

(2.105)

The S 0 parameter described the total light intensity, while the S 1 − S 3 parameters
describe the polarization state in terms of the differences between all possible linear
and circular polarization states. By writing the different Stokes parameters in terms
of the electric field values, we can relate them to the ellipsometric parameters (Ψ,∆)
and (ε, µ).

S 0 = Ix + Iy = E2
x,0 + E2

y,0 = ExE∗x + EyE∗y (2.106)

S 1 = Ix − Iy = E2
x,0 − E2

y,0 = ExE∗x − EyE∗y (2.107)

For the S 2 parameter we use a rotation of the x- and y-directions over −45o

(

E−45o

E+45o

)

=

(

cos−45o sin−45o

− sin−45o cos−45o

) (

Ex

Ey

)

=
1
√

2

(

Ex − Ey

Ex + Ey

)

(2.108)

From which we can derive S 2

S 2 = E+45o E∗+45o − E−45o E∗−45o

=
1
2[(Ex + Ey)(E∗x + E∗y) − (Ex − Ey)(E∗x − E∗y)]

= ExE∗y + E∗xEy

(2.109)

For S 3 we can make a similar derivation as for S 2 where we rewrite Ecirc,le f t and
Ecirc,right in function of Ex and Ey
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(

Ecirc,le f t

Ecirc,right

)

=
1
√

2

(

1 i
1 −i

) (

Ex

Ey

)

=
1
√

2

(

Ex + iEy

Ex − iEy

)

(2.110)

From which we obtain S 3

S 3 = Ecirc,rightE
∗
circ,right − Ecirc,le f tE

∗
circ,le f t

=
1
2[(Ex − iEy)(E∗x + iE∗y) − (Ex + iEy)(E∗x − iE∗y)]

= i(ExE∗y − E∗xEy)

(2.111)

Now we can relate the Stokes parameters to the ellipsometric angles (Ψ,∆). For
S 0 we start from equation 2.107 and we see from the main equation of ellipsometry
(2.88) and figure 2.28 that we obtain a normalized vector with magnitude 1.

S 0 = E2
x,0 + E2

y,0 = ExE∗x + EyE∗y = sin2Ψ + cos2Ψ = 1 (2.112)

Similarly for S 1 we obtain

S 1 = E2
x,0 − E2

y,0 = ExE∗x − EyE∗y = sin2Ψ − cos2Ψ = − cos 2Ψ (2.113)

For S 2 we start from equation 2.110 and we use that (ExE∗y)∗ = E∗xEy such that
S 2 can be rewritten to

S 2 = 2Re(ExE∗y) = 2Re(E∗xEy) (2.114)

For complex numbers C we can write Re(C) = Re(C∗) and Im(C) = −Im(C∗).
From equation 2.93 we can write E∗x = Ex,0e−i(δx−δy) and Ey = Ey,0 which yields

S 2 = 2Ex,0Ey,0Re(e−i(δx−δy))
= 2 sinΨ cosΨ cos(δx − δy)
= 2 sinΨ cosΨ cos∆
= sin 2Ψ cos∆

(2.115)

Using Im(C) = C+C∗

2i we obtain S 3 from equation 2.112

S 3 = −Im(ExE∗y) = Im(E∗xEy)
= 2Ex,0Ey,0Im(e−i(δx−δy))
= 2 sinΨ cosΨ sin(δx − δy)
= 2 sinΨ cosΨ sin∆
= sin 2Ψ sin∆

(2.116)
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Figure 2.30: The Poincaré sphere as a representation of various polarization states and the
ellipsometric angles (ε, θ) [50]

Any polarization state can be described by a point on the Poincaré sphere (figure
2.30), which is a graphical illustration based on the Stokes parameters. The S 0
parameter gives the intensity of the light which corresponds to the radius of the
sphere, while S 1 − S 3 are the coordinate axes for the construction of the sphere. The
point P on the sphere corresponding to a certain polarization state is constructed by
using the Stokes parameters and the corresponding angles of 2ε and 2θ give the polar
coordinates of the point P (equation 2.118). If we consider the Poincaré sphere as a
globe then the equator corresponds to linear polarization states and the poles represent
circular polarization states. A polarization state in between those corresponds to
elliptical polarization and in the northern hemisphere it rotates right while in the
southern hemisphere it rotates left.

S 1 = cos 2ε cos 2θ
S 2 = cos 2ε sin 2θ

S 3 = sin 2ε
(2.117)

2.5.3 Rotating analyzer/polarizer ellipsometry

In a rotating polarizer ellipsometry setup either the polarizer (P) or the analyzer (A)
(figure 2.31) can be rotating in order to modulate the signal and extract the phase
difference ∆ between P- and S-polarized waves. Here we consider the case where the
analyzer is rotating at an angular frequency ω such that the rotation angle is given by
φA = ωt.

The transmission through the setup can then be described by Jones matrices

Lout = AR(φA)S R(−φP)PLin (2.118)

In this configuration Lout represents the detected signal of the photodetector along
the polarization axis (φA) of the analyzer (A) , while Lin represents the incident
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Figure 2.31: Schematic overview of a rotating analyzer ellipsometry setup. [50]

wave with polarization along the polarization axis (φP) of the polarizer (P). This
representation is used because the Jones formalism doesn’t allow to describe the
unpolarized light source, but the transmitted light after the polarizer (P) contains only
linearly polarized light along the polarization axis of P. Similarly, the photodetector
will only detect linearly polarized waves with the polarization along the axis of
A. With respect to the coordinate system of (Ei,p, Ei,s) we should formally write
the Jones matrices R(−φP)PR(φP) and R(−φA)AR(φA) for the polarizer and analyzer
respectively. Due to the definitions of Lout and Lin we can drop the terms R(φP) and
R(−φA), which results in the overall matrix formulation for the setup

(

EA

0

)

=

(

1 0
0 0

) (

cos φA sin φA

− sin φA cos φA

) (

sinΨei∆ 0
0 cosΨ

) (

cos φP − sin φP

sin φP cos φP

) (

1 0
0 0

) (

1
0

)

(2.119)
In typical ellipsometry measurements the polarizer on the incident side is set at

45o and in that case the matrix expression can be simplified to
(

EA

0

)

=
1
√

2

(

1 0
0 0

) (

cos φA sin φA

− sin φA cos φA

) (

sinΨei∆

cosΨ

)

(2.120)

From which we obtain the expression for EA (we drop the constant 1/
√

2)

EA = cos φA sinΨei∆ + sin φA cosΨ (2.121)

The normalized relative light intensity measured by the detector is obtained using
equation 2.94 and dropping the constant factor of 1/2

I = |EA|2

= I0(1 − cos 2Ψ cos 2φA + sin 2Ψ cos∆ sin 2φA

= I0(1 + S 1 cos 2φA + S 2 sin 2φA)
(2.122)

In which I0 is the normalized intensity of the incident beam. Moreover, it is
important to note that the modulation of the intensity of the transmitted light varies
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Figure 2.32: Schematic overview of a PEM-based ellipsometry setup. [50]

as a function of 2A as a rotation of the analyzer of 180o yields the same transmitted
intensity. By substituting φA = ωt in the expression above, we obtain the time-
dependent transmitted intensity.

I = I0(1 + S 1 cos 2ωt + S 2 sin 2ωt) (2.123)

So far we considered the case where the polarizer angle P was fixed at 45o, which
was the configuration used for all ellipsometry experiments described in this thesis.
Depending on the sample structure under investigation, it can be useful to set different
polarizer angles to improve the signal-to-noise ratio. The measured signal will also be
time dependent and the Fourier components α and β can be deduced by plugging in
the correct angle for P in equation 2.220. In their most general form, the normalized
Fourier coefficients can be written as

S 1 =
cos 2φP−cos 2Ψ

1−cos 2φP cos 2Ψ =
tan2 Ψ−tan2 φP

tan2 Ψ−tan2 φP

S 2 =
sin 2Ψ cos∆ sin 2φP

1−cos 2φP cos 2Ψ =
2 tanΨ cos∆ tan φP

tan2 Ψ−tan2 φP

(2.124)

These normalized Fourier coefficients are measured during an ellipsometry mea-
surement and the ellipsometric angles Ψ and ∆ are calculated from

tanΨ =
√

1+S 1
1−S 1

cos∆ = S 2√
1−S 2

1

(2.125)

A rotating polarizer ellipsometer is mathematically equivalent to the rotating ana-
lyzer ellipsometer, and the ellipsometric angles are obtained by replacing tan φP by
tan φA in the equations above.

2.5.4 Photo-Elastic Modulator (PEM) based ellipsometry

In PEM-based ellipsometry a photo-elastic modulator is used to modulate the po-
larization state of the probing beam. In the original design [52], the modulator was
placed behind the sample (figure 2.32), but nowadays the modulator is often placed
before the sample for practical reasons.
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The polarizer (P) sets the polarization (φP = 45o), after which the beam passes
through the PEM (M) which modulates the beam along φM = 0o. After reflection
from the sample (S ) the beam passes through the analyzer (A) which defines the
polarization state (φA = −45o) before the beam enters the detector. The entire setup
can be described in terms of Jones matrices

Lout = AR(φA)S R(−φM)MR(φM)R(−φP)PLin = AR(φA)S R(−φM)MR(φM − φP)PLin

(2.126)
In which we dropped the terms R(−φA) and R(φP) as the only contributing terms

will be polarized along the φA and φP polarization directions, and substituted
R(φM)R(−φP) by R(φM − φP). We are only interested in the relative intensities, so the
terms in 1/

√
2 (for R(φA) and R(φM − φP)) are dropped in the equation of the Jones

matrices

(

EA

0

)

=

(

1 0
0 0

) (

1 1
−1 1

) (

sinΨei∆ 0
0 cosΨ

) (

1 0
0 eiδ

) (

1 −1
1 1

) (

1 0
0 0

) (

1
0

)

(2.127)

The resulting transmission through the setup is given by

EA = sinΨei∆ + cosΨeiδ (2.128)

from which we can deduce the intensity

I = |EA|2

= I0(1 + sin 2Ψ(cos∆ cos δ + sin∆ sin δ))
= I0(1 + S 2 cos δ + S 3 sin δ)

(2.129)

If we now introduce the time dependence δ = F sinωt we obtain the expressions
for sin δ and cos δ

sin δ = sin(F sinωt) = 2 ∑∞
m=0 J2m+1(F) sin[(2m + 1)ωt]

cos δ = cos(F sinωt) = J0(F) + 2 ∑∞
m=1 J2m(F) cos[2mωt] (2.130)

In which the terms Jm are Bessel functions with respect to F. In PEM-based
ellipsometry we measure at the modulation frequency (50kHz) and its first harmonic
(100kHz) and drop the higher order terms

sin δ = 2J1(F) sinωt
cos δ = J0(F) + 2J2(F) cos 2ωt

(2.131)

The applied voltage to the PEM is adjusted such that the retardation is fixed at F =
138o, which sets the values of the Bessel functions to be J0(F) = 0, 2J1(F) = 1.04
and 2J2(F) = 0.86. This simplifies the analysis tremendously and allows to write the
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measured intensity from lock-in measurements at 50kHz and 100kHz as function of
the ellipsometric angles Ψ and ∆

I(t) = I0(1 + sin 2Ψ sin∆[2J1(F) sinωt] + sin 2Ψ cos∆[2J2(F) cos 2ωt]) (2.132)

In that way, we obtain the final expressions for Ψ and ∆

Ψ = 1
2 sin−1 √

(2J1(F) sinωt)2 + (2J2(F) cos 2ωt)2

∆ = tan−1 2J1(F) sinωt
2J2(F) cos 2ωt

(2.133)

2.6 Electromagnetic simulations

Electromagnetic simulations are crucial to the understanding of plasmonic metamate-
rials and were used in the sample design of all structures described in this thesis. De-
pending on the type of application, we used two different commercial finite-element
simulation packages for solving Maxwell’s equations.

2.6.1 Lumerical FDTD

Finite-Difference Time Domain simulations were conducted in Lumerical FDTD [53],
which is a commercial time-domain finite element solver for Maxwell’s equations.
The sample structures are defined in 2 or 3 dimensions in the simulation area and
the optical properties of the materials are set in terms of the frequency dependent
values of the permittivity. A rectangular mesh is defined to divide the structure
into discrete cells for which Maxwell’s equations are solved in the time domain.
A pulse containing the frequencies of interest is applied to the structure and its
electromagnetic response is calculated as function of time. The simulation continues
to run until the electromagnetic fields have converged to values below the predifined
shut-off criterion. The electromagnetic fields at a given frequency are obtained by
Fourier analysis of the time-dependent solutions. In that way, the spectral response of
any given sample structure can be obtained and compared with experimental results.

2.6.2 Comsol multiphysics

The RF-module of Comsol Multiphysics [54] was used for angle and wavelength
dependent optical simulations of the spectroscopic ellipsometry parameters of our
plasmonic structures. In the RF-module in Comsol the sample structures are defined
in 2 or 3 dimensions in the simulation area and the optical properties of the materials
are set in terms of the frequency dependent values of the permittivity. A triangu-
lar mesh is defined to divide the structure into discrete cells for which Maxwell’s
equations are solved. For angle-dependent broadband simulations it is necessary to
solve Maxwell’s equations in the frequency domain in order to fix the incident angle.
Broadband simulations in the time domain would not yield correct solutions as the
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angle of incidence will be slightly different for each frequency contained in the pulse.
In order to extract the correct phase information our sample structures are simulated
as periodic structures by means of Bloch boundary conditions which ensures that the
phase is properly matched at the periodic boundaries of the simulation space.

2.6.3 Comparison of the two solvers

As outlined in the previous sections, different solvers were used throughout this
thesis, depending on the specific application. In general Lumerical FDTD performs
better in terms of calculation time and memory requirements, which is why it is
often the most convenient choice. However, in case of broadband angle-dependent
simulations (for example for ellipsometry measurements), we are restricted to the
frequency domain in order to fix the incident angle. Here we want to show one
example where the two solvers are compared for the same structure at perpendicular
incidence, in order to confirm that they are a reliable reference for the experiments
performed. We calculated the reflection and transmission spectra of a hexagonal
double fishnet metamaterial structure (discussed in more detail in chapter 3) with
a pitch of 500 nm and a hole diameter of 250 nm, as described in figure 3.1. For
both simulations the materials are defined in terms of their frequency dependent
permittivity which was taken from reference [1] for Au and as a constant value for
S iO2 (ε = 1.96 + 0i).

(a) (b)

Figure 2.33: Comparison of simulation results in Lumerical FDTD and Comsol Multiphysics
for a hexagonal double fishnet structure. (a) Reflection spectra. (b) Transmission spectra.

The simulated reflection and transmission spectra for both solvers show good
qualitative agreement, which indicates that both solvers provide reliable results for
the plasmonic structures investigated in this thesis. The small differences between
the obtained solutions can be attributed to different meshing of the structures in both
packages. Due to the rectangular shape of the mesh in Lumerical FDTD, we observe
staircasing effects at the inclined sidewall angles of the holes, while this effect is much
less pronounced for the triangular meshes used in Comsol Multiphysics. The used



Chapter 2 61

mesh sizes in this example were larger in Comsol, due to memory and computation
time limitations.
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Chapter 3

Self-assembled negative index
materials

3.1 Introduction

In this chapter we show the experimental use of nanosphere lithography (NSL) for
fabricating metamaterials with a negative refractive index in the NIR wavelength
range. We investigated a specific implementation of the widely studied double fishnet
(DFN) metamaterials, consisting of a gold-silica-gold layer stack perforated by a
hexagonal array of round holes. Tuning of the hole diameter allows to tailor these
self-assembled materials as single- (Re(ε) < 0 and Re(µ) > 0) or double (Re(ε) <
0 and Re(µ) < 0) negative metamaterials. We benchmarked our self-assembled
metamaterials with electron-beam lithography (EBL) based reference structures. The
results presented in this chapter were published in Applied Physics Letters in the
paper “Self-assembled hexagonal double fishnets as negative index materials” [1].
Since the introduction of NIMs by Veselago [2] and the discovery of the possibility of
realizing sub-wavelength resolution for imaging devices based on these metamaterials
by Pendry [3], many different designs have been proposed to make the “perfect lens”
dream reality. A widely studied geometry in the visible and near-infrared (NIR)
wavelength range is the DFN structure [4–8], which consists of a stack of MIM layers
perforated by a periodic array of holes. The pioneering work by Dolling et al. [5]
demonstrated the reversal of the phase velocity, and more recently, also negative
refraction was observed in a multilayer fishnet prism structure [9]. The behavior of
these NIMs is governed by a magnetic resonance that is excited in the MIM cavities
in between the holes and the negative permittivity (ε) of the metal layers [10]. At
the magnetic resonance, plasmons are excited on the top- and bottom interface of
the insulator layer of the MIM cavities, which give rise to a strong magnetic dipole
resonance that lowers the effective permeability (µ) which can even reach negative
values. Simultaneously negative values for ε and µ give rise to a negative value for
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Figure 3.1: (a) Schematic sample structure. (b) Unit cell for simulations (dimensions
for the NSL/EBL samples), D is the diameter and α the 20 ◦ sidewall angle of the
holes. Detailed scanning electron microscope picture of the NSL sample (c) and a
perfectly ordered domain with some defects (d).

the refractive index (n). Based on the real parts (′) of the effective parameters of
the metamaterial, NIMs can be classified as single- or double negative metamaterials
(SN-NIMs with ε′ < 0 and µ′ > 0 while n′ < 0 and DN-NIMs with ε′ < 0 and µ′ < 0
while n′ < 0). The figure of merit (FOM) for NIMs is defined as the amplitude ratio
between the real (′) and imaginary (′′) part of the refractive index (FOM = |n′/n′′|).
Depending on the single- or double negative nature of the NIM, low (SN) or high
(DN) values of the FOM are observed. A major drawback of most structures reported
to date is that the fabrication involves expensive and low-throughput lithography steps
such as EBL or focussed ion beam milling, which limits the potential usage of these
metamaterials in large-scale applications.

Here we show that we can circumvent this limitation by using nanosphere litho-
graphy (NSL), which allows to create large-area DFN metamaterials consisting of
a MIM layer stack perforated by a hexagonal array of holes. The hole pattern is
generated using a self-assembled close packed monolayer of 550 nm polystyrene
(PS) beads. The pitch of the holes can be tuned by the bead size, while their diameter
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can be tuned by the bead shrinking step, which allows us to create both SN- and
DN-NIMs. Moreover, our fabrication procedure based on ion beam etching (IBE)
enables an increase of the overall layer thickness of the NIM, which paves the way
to multiple functional layers. The sample geometry is illustrated in figure 3.1. The
structure consists of a Au − S iO2 − Au MIM stack (60 − 60 − 60nm) perforated with
a hexagonal array of round holes on top of a glass substrate.

3.2 Sample fabrication

Both our NSL and EBL based samples were fabricated by means of ion beam etching
(IBE) through the MIM layer stack, but the definition of the pattern in the e-beam
resist layer is done differently. Both fabrication protocols are outlined in the following
sections.

3.2.1 Self-assembly samples

Processing steps

The sample fabrication steps for the NSL based samples are outlined in figure 3.2.
We start from a glass substrate which is cleaned using H2S O4/H2O2 3 : 1 for 15
minutes, followed by an oxygen plasma treatment (a). The Au(60nm), S iO2(60nm)
and Au(60nm) MIM layers are sputter deposited onto the subtrate (b). The MET-
2D [11] e-beam resist is spin coated at 1300 rpm for 45 seconds and subsequently
baked at 120oC in nitrogen environment for 30 minutes (c). The resist layer is covered
by sputter deposition with 10nm Au which serves as a protection layer during the PS
bead shrinking process (d). The PS beads are deposited by means of spin-coating,
which allows to control the self-assembly process. We start from a 0.5% solution of
PS beads in water and spin at 300 rpm for 5 minutes, followed by a spinning step at
2000 rpm for 30 seconds to remove the remaining solution from the substrate. The
resulting sample structure is covered by a close-packed hexagonal monolayer of PS
beads (e). The bead positions are fixed by applying a short annealing step (100oC for
1 minute) and subsequently they are shrunk using an oxygen plasma treatment. The
duration of the etch determines the final bead size and thus the dimensions of the holes
in the final sample structure (f). A 5nmTi mask is evaporated on top in order to invert
the pattern defined by the PS beads (g). The beads are lifted off by dissolving them
in toluene (h). The Ti layer now serves as a hard mark for and IBE step that transfers
the hole pattern into the Au protection layer (i). Subsequently the hole pattern is
transferred into the resist layer by an inductively coupled oxygen plasma etch (j) and
into the MIM layer by IBE (k). The remaining resist layer is removed by oxygen
plasma treatement (l). The final sample structure consists of a hexagonal lattice of
holes with a diameter of 270 nm and a pitch of 550 nm (initial bead diameter).
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Figure 3.2: Schematic overview of all the processing steps for the self-assembly
samples

Self assembly of PS beads

The self-assembled hexagonal close-packed monolayers of PS beads were obtained
by spin-coating. The spinning speed can be adjusted to control the evaporation rate
of the bead solution, which allows us to gradually grow larger monolayers with a
single lattice orientation. The self-assembly is governed by the “coffee stain effect”
[12, 13], which results in a ring of deposited solid materials as a droplet of liquid
containing solid particles is gradually evaporating. When a droplet is formed on a
substrate the contact line between the droplet and the substrate can get pinned due
to surface roughness or corrugations. If the droplet is pinned and the evaporation
process continues over the entire interface between the droplet and the surroundings
then the contact line can only maintain its position if a flow of solution from the bulk
of the droplet towards the edge is present. This flow will drag any solids (in our case
PS beads) dissolved in the fluid along, and deposit them near to the contact line of the
droplet. Depending on the shape of the droplet and the evaporation rate of the fluid
this effect allows to create monolayers or multilayers of close packed beads (figure
3.3(a)). In our experiments we put a droplet of 0.5% solution of 550 nm PS beads to
our substrate, after which the spinning is started at a slow but constant rate. A spot
in the center of the substrate will will dry quickly while the droplet gets pinned at a
certain distance from the center of rotation, determined by the spinner rotation speed
(figure 3.3(b)). The coffee stain effect now results in a stable flow towards the ring of
beads that is formed near the contact line of the droplet, which will gradually grow
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(a) (b)

(i)

(ii)

Figure 3.3: Schematic illustration of the formation of a self-assembled monolayer of
PS beads. (a) Coffee-stain effect. (b) Coffee-stain effect for spin-coating.

into a 2D assembly of hexagonal close packed PS beads.
The resulting DFN sample structures contain large areas up to 100 x 100 µm2

that show a single lattice orientation and a small number of defects. The total sample
areas covered by monolayers of beads (with variable lattice orientations) extend up
to milimeter scales. Typical SEM pictures of our samples are shown in figure 3.4 (a),
in which we can see some different types of defects (e.g. line defects and missing
holes). The inset of panel (a) shows a fast-fourier transform of the SEM picture
which illustrates the good quality of the hexagonal lattice structure, while in panel
(b) a periodic array of PS beads is shown after the shrinking step.

3.2.2 E-beam samples

The EBL samples were fabricated as benchmark structures for the NSL samples and
were designed with a slightly smaller pitch of 500nm. The hole sizes were varied
between 150nm and 300nm. The processing steps are identical to those for NSL
samples, except for the fact that the NSL steps (d to j in figure 3.2) are replaced by
e-beam writing of the pattern and subsequent development of the MET-2D resist.

3.3 Optical characterization

The optical response of the DFN samples was characterized by transmission and
reflection measurements on a home-built setup. A Fianium supercontinuum white
light source [14] equiped with an acousto-optical tunable filter (AOTF) was used
to perform a spectral scan over the wavelength range of interest. The signals were
recorded with a silicon detector and were normalized with respect to the reference
signal from a glass slide (transmission) and a thick gold layer (reflection).

3.3.1 NSL samples

An overview of the optical response of the self-assembled hexagonal DFN is given
in Figure 3.5. The measured and simulated transmission and reflection data (panel
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( )a

( )b

10 µm

500 nm

500 nm

Figure 3.4: SEM pictures of the sample structures. (a) Large area of DFN sample
showing single lattice orientation. (b) Side-view of an array of beads after self
assembly and shrinking.
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a) show two pronounced resonances which exhibit good qualitative agreement. The
corresponding magnetic field intensity plots (panel b and d) and charge density plots
(panel c and e) provide good insight in the nature of these modes. The magnetic field
intensity plots show the out-of-plane field component in a cross section of the MIM
layer stack. This perpendicular component is a good measure for the excitation of
surface plasmons, and illustrates how the first mode at 825 nm (panel b) is confined
at the interface between the bottom Au layer and the substrate, while the second
mode at 980 nm (panel d) is confined on the top and bottom interfaces of the S iO2
layer. The corresponding charge density plots show that for the first mode (panel
c) parallel and for the second mode (panel e) anti-parallel displacement currents are
excited in the Au layers of the MIM cavity. The second mode clearly shows a strong
magnetic resonance (panel d) where an out-of-phase magnetic dipole (with respect to
the incident plane wave) is excited in the S iO2 of the MIM cavity, and that gives rise
to a strong decrease of the effective µ′ of the metamaterial. In combination with the
negative ε′ of the Au layers, this results in a negative value for n′.

The effective material parameters extracted from simulations are summarized in
panels f and g (for details see section 3.3.3 and 2.3.2). We first carried out the
extraction with the bulk properties of Au [15] and then gradually increased the ε ′′
(up to 3 times the bulk value), to compensate for fabrication imperfections and in-
terface roughness. When increasing ε ′′ of the Au layers, all resonances are damped
(decreased amplitude) and broadened while maintaining their spectral position. This
damping is also reflected in the extracted effective parameters, which show a decrease
in the resonance amplitude as ε′′ of the Au layers is increased. Smaller absolute
values for n′ and larger values for n′′ are obtained, resulting in a decrease of the
FOM (panel f). The resonances in the effective ε ′ and µ′, are also decreased in
amplitude (panel g). When comparing the measured spectra with simulation data,
we clearly observe that for the first resonance, the bulk damping coefficients give
us the best fit, which can be explained by its nature. The mode is dominated by
the bottom hole cavity and plasmons excited at the interface between the substrate
and the bottom Au layer (panel b). Since the substrate roughness is much smaller
than the roughness of the sputtered MIM layers, we don’t expect much additional
damping on top of the bulk material properties [16]. For the magnetic resonance on
the other hand, we see more damping in the measurement than for the simulation with
the bulk Au parameters (1X). When increasing ε ′′ (2X and 3X) in the simulations,
we clearly see the modes becoming less pronounced, which is most apparent in
the transmission spectrum near the magnetic resonance. The step-like behavior is
observed in all simulations, but the sharp edge that is observed for the bulk ε ′′
becomes less steep as the damping is increased. Therefore, the step-like behavior in
the transmission spectrum is a good measure to determine the importance of damping,
by fitting the measured spectrum to the simulated spectra with different values of the
ε′′. In practice, we search for qualitative correspondence of the shape of the magnetic
resonance to determine the most appropriate damping. Based on experimental results
for various hole sizes, we suggest that doubling the ε ′′ of the Au layers is sufficient
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Figure 3.5: Measurements and simulations for a self-assembled hexagonal DFN.
(a) Measured (full lines) and simulated (dotted lines) reflection and transmission
spectra with different damping. (1, 2, 3X = number of times the bulk imaginary ε
of Au). (b) and (d) Show the magnetic field intensity plot at the 825 and 980 nm
resonance respectively. (c) and (e) Show the charge density plot at the 825 and 980
nm resonance respectively. (f) Simulated real part of n and the FOM for different
damping in the Au layers. (g) Simulated effective parameters: ε ′ and µ′ for different
damping in the Au layers.

to account for the increased damping due to surface roughness and the nanoscale
dimensions of the metamaterial. Again, the increased damping can be understood
from the nature of the resonance. At the magnetic resonance, plasmons are excited
on the top and bottom of the S iO2 spacer, which are more prone to surface roughness,
as these are created by sputter deposition [16].

3.3.2 EBL samples

An overview of the measured and simulated transmission and reflection spectra is
presented in figure 3.6 for a batch of hexagonal DFNs, fabricated by EBL, with
150nm ≤ D ≤ 300nm and a pitch of 500 nm. The measured spectra show good
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agreement to the simulated spectra, in which bulk material parameters were used.
For all samples, the two main modes of the structure can be clearly observed, and
show the expected wavelength shifts with respect to the diameter. The first resonance
between 750 nm to 800 nm shows a red-shift with increasing diameter, which is
related to the cut-off of the hole transmission. As the hole size is decreased, the
resulting decrease in transmission is smaller for shorter than for longer wavelengths,
due to the non-linear dependence of the transmission beyond the cut-off frequency of
the hole waveguide [17]. The second mode between 900 to 950 nm shows a blue-shift
with increasing diameter. As this mode is related to the excitation of plasmons [10]
on the interfaces of the S iO2 layer, the blue shift with increasing diameter can be
attributed to decreasing MIM cavity length.

(a) (b)

(c) (d)

Figure 3.6: Reflection and transmission spectra for EBL based hexagonal DFNs
with 150nm ≤ D ≤ 300nm. Measured reflection (a) and transmission (b). Simulated
reflection (c) and transmission (d).

All samples shown in figure 3.6 exhibit negative values for n′ around the magnetic
resonance. The strength of the magnetic resonance is different for the various hole
sizes, and the strongest resonance is observed for a diameter of 250 nm, which is the
only sample that exhibits DN behavior (using double ε ′′).

When we compare the measured spectra for NSL samples (figure 3.5 (a)) and EBL
samples (figure 3.6 (a and b)), we observe some minor differences. Both sample types
show broadening of the measured resonances with respect to the simulated spectra,
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but the broadening is more pronounced for NSL samples (Q-factor of about 15 versus
20 for EBL). This can be attributed to line defects and missing holes, but also to size
variations in the PS beads and imperfect hole shapes due to the shrinking step.

3.3.3 Simulations and effective parameter retrieval

The optical response of our samples was modeled using finite-difference time domain
simulations [18]. A rectangular unit cell with periodic boundary conditions was used
(figure 3.1 (a and b)). The complex fields on the top and bottom surface of the MIM
trilayer structure were averaged over the unit cell (homogenization) in order to extract
the effective material parameters, taking into account the bianisotropy (sidewall angle
of holes) of the samples (see section 2.3.2). In that way, the complex effective para-
meters (n, Z, ε and µ) and the FOM were calculated. Figure 3.7 shows an overview
of the effective parameters for a hexagonal double fishnet sample with a 250 nm hole
diameter and a pitch of 500 nm. The imaginary part of the permittivity of Au was
taken twice the bulk value [15]. Panel a provides an overview of the far-field reflection
and transmission data for both sides of incidence. Clearly the transmission through
the fishnet layers is identical for both propagation directions, while the reflection
spectra show a significant difference. The extracted values for the refractive index
(panel b) and FOM (panel c) show the different values for top incidence (black),
bottom incidence (red) and the effective value (blue) for the bianisotropic case. For
the impedance (panel d), the values obtained without bianisotropy correction for
top incidence (black full line) and bottom incidence (red full line) clearly coincide
with the bianisotropy-corrected values calculated for top incidence (black dots) and
bottom incidence (red dots). Using these 2 values for the impedance together with
the bianisotropy-corrected extracted refractive index, results in the effective permit-
tivity (panel e) and permeability (panel f) for the bianisotropic samples, which are
slightly different from the isotropic case. In panels e and f, the full lines correspond
to the isotropic case, dotted lines correspond to the bianisotropic case while black
corresponds to the top incidence cases and red to the bottom incidence cases.

3.4 Conclusions

We have shown the feasibility to use NSL for the fabrication of large area metamate-
rials that exhibit a negative value of the refractive index in the NIR wavelength range.
We compared the NSL-based samples with EBL-based reference samples which in-
dicated that the self-assembled samples show similar performance. Depending on
the hole diameter, the metamaterials can be tuned to be single- or double-negative
in nature. Moreover, we have shown that the damping of the resonances due to
the nanoscale structure and fabrication imperfections seems to be smaller compared
to earlier works, and should in our case only be taken twice as large as the bulk
permittivity for Au in order to allow extraction of effective material parameters.



Chapter 3 79

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Overview of the extracted effective material parameters without and with
bi-anisotropy correction.
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Chapter 4

Phase-sensitive measurements
of LSPRs for improved sensing
applications

4.1 Introduction

In this chapter we investigate the phase of localized surface plasmon resonances for
sensing applications. In many of the existing applications only the intensity of the
reflected or transmitted signals is taken into account, while the phase information
is ignored. At the center frequency of a (localized) surface plasmon resonance, the
electron cloud makes the transition between in- and out-of-phase oscillation with
respect to the incident wave. Here we show that this information can experimentally
be extracted by performing phase-sensitive measurements, which result in linewidths
that are almost one order of magnitude smaller than those for intensity based measure-
ments. As this phase change is an intrinsic property of a plasmon resonance, this
opens up many possibilities for boosting the figure of merit (FOM) of refractive
index sensing by taking into account the phase of the plasmon resonance. We ex-
perimentally investigated this for two model systems: randomly distributed gold
nanodisks and gold nanorings on top of a continuous gold layer and a dielectric
spacer and observed FOM values up to 8.3 and 16.5 for the respective nanoparticles.
The results presented in this chapter were published in Nano Letters in the paper
“Boosting the Figure-Of-Merit of LSPR-Based Refractive Index Sensing by Phase-
Sensitive Measurements” [1].
The collective oscillations of the free electrons in noble metals have been studied
extensively over the past decades for a wide variety of applications. Both propagating
surface plasmon polariton (SPP) and localized surface plasmon resonance (LSPR)
modes posess very interesting properties, with applications in sensing (refractive
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index sensing [2–7], SERS [8]), metamaterials [9], waveguiding [10, 11] and en-
hanced coupling to active semiconductor components (e.g. photovoltaic cells [12],
SPASERs [13, 14]). Refractive index sensing is by far the most studied application
and allows label-free and real-time detection of changes in the dielectric environment
of the plasmonic nanostructures. Moreover, by functionalizing the nanostructures,
the sensors can be made specific to a particular molecule. In former works, research
groups have followed various paths in order to optimize the nanostructure designs
such that higher sensitivities, figures of merit and lower detection limits (DLs) can be
achieved. Plasmon resonances are extremely sensitive to the refractive index of the
surrounding medium. With increasing values of the refractive index the LSPR shows
a red shift, and the magnitude of this shift divided by the change in refractive index
is defined as the sensitivity (dλ/dn). The figure of merit of a plasmon resonance
is given by the ratio between the sensitivity and the width of the resonance peak
(FOM = (dλ/dn)/ f whm), and high values of the FOM are an indication for good
sensor performance. For structures with increased FOMs, the DLs (smallest refractive
index change which can be measured) can be reduced. Recently a lot of progress has
been made in line width tuning (Fano resonances, sub-radiance) in order to obtain
higher FOMs [2, 3, 15–19].
In any resonant system, a pronounced transition from in- to out-of-phase oscillation
is observed around the center frequency of the resonance with respect to the driving
force. This is also the case for (localized) surface plasmon resonances, where the
electron cloud makes the transition between in- and out-of-phase oscillation with
respect to the incident wave [19]. Also for conventional SPR sensing, it was shown
that these phase changes can be probed by phase sensitive measurements, which
show a much smaller spectral/angular footprint compared to their intensity based
counterparts [4, 5]. Here we show that using standard spectroscopic ellipsometry
measurements, we can measure similar phase jumps around the center frequency of
localized surface plasmon resonances. For our two model systems, we investigated
the angle- and polarization dependent reflection spectra and the phase difference
between P- and S-polarized waves, using lock-in measurements.

4.2 Sample fabrication

The gold nanoparticles were fabricated by nanosphere lithography (NSL) using a self-
assembled monolayer of randomly distributed polystyrene (PS) beads. The formation
of the bead monolayer is based on the protocol described in reference [20].

4.2.1 Self-assembled monolayers of PS beads

The substrates are treated with an oxygen plasma in order to make the surface hy-
drophilic. A droplet of 0.2% wt polydiallyldimethylammonium (PDDA) solution is
applied on the surface for 30 seconds after which the sample is rinsed under a water
flow for 30 seconds and dried under a nitrogen flow. A self-assembled monolayer
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(SAM) of PDDA is left on the substrate, which results in a positively charged surface.
Subsequently a droplet of 0.2% wt solution of PS beads functionalized with sulfate
groups is applied on the surface for 2 minutes after which the sample is rinsed under
a water flow for 30 seconds and dried under a nitrogen flow. The negative charges
on the sulfate groups results in electrostatic repulsion between the PS beads while
they are attracted to the positively charged substrate. As a result the beads form
a monolayer on the substrate with a fixed average inter-particle distance (center-to-
center) which is about 2.5 times the PS bead diameter.

4.2.2 Gold nanorings

The gold nanorings are illustrated in figure 4.1 and have an inner diameter of 100 nm,
an outer diameter of 150 nm and a height of 60 nm. The average interparticle distance
(center-to-center) is 250 nm.

(a) (b)

Figure 4.1: (a) Schematic sample structure structure for a 1µm2 sample area of gold
nanorings. (b) Side view SEM picture. Scale bar 500 nm.

The sample fabrication steps for the nanoring samples are outlined in figure 4.2.
We start from a glass substrate which is cleaned using H2S O4/H2O2 3 : 1 for 15 min-
utes, followed by an oxygen plasma treatment (a). The Au(100nm) and S iO2(50nm)
layers are sputter deposited onto the subtrate (b). The SAM layer of 100 nm PS beads
is deposited according to the procedure described in section 4.2.1 (c). The beads are
covered with a 30 nm Au layer by sputter deposition (d). An ion beam etching step
is applied in order to open up the top aperture of the rings and to remove the gold in
between the particles (e). As a final step the PS beads are etched in oxygen plasma
(f).
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Fabrication protocol of gold nanorings.

4.2.3 Gold nanodisks

The gold nanorings are illustrated in figure 4.3 and have a diameter of 140 nm and a
height of 60 nm. The average interparticle distance (center-to-center) is 350 nm.

(a) (b)

Figure 4.3: (a) Schematic sample structure structure for a 1µm2 sample area of gold
nanodisks. (b) Side view SEM picture. Scale bar 500 nm.

The sample fabrication steps for the nanodisk samples are outlined in figure
4.4. We start from a glass substrate which is cleaned using H2S O4/H2O2 3 : 1



Chapter 4 87

for 15 minutes, followed by an oxygen plasma treatment (a). The Au(100nm) and
S iO2(50nm) layers are sputter deposited onto the subtrate (b). A 200 nm PMMA
e-beam resist layer is spincoated on top (c). The SAM layer of 140 nm PS beads
is deposited according to the procedure described in section 4.2.1 (d). A 10 nm Au
layer is evaporated on top in order to create a shadow mask of holes (e). The beads
are removed by tape stripping (f). The hole pattern is transfered into the PMMA layer
by oxygen plasma etching (g). 30 nm of Au is evaporated forming disks in the holes
(h). The PMMA layer is lifted off leaving the disk particles on the substrate (i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Fabrication protocol of gold nanodisks.

4.3 Results and discussion

We investigated localized surface plasmon resonances in randomly distributed gold
nanoparticles on top of a continuous gold layer and a dielectric spacer by spec-
troscopic ellipsometry. By scanning the angle of incidence, the electric dipole re-
sonances in the nanoparticles become spectrally detuned for both polarization states.
Both for P- and S-polarized waves, the electric dipole (figure 4.5 c and f) in the
nanoparticle couples to an electric quadrupole (figure 4.5 a, b, e) in the combined
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nanoparticle/gold film complex, which gives rise to an induced magnetic dipole per-
pendicular (figure 4.5 a, d, g) to the electric dipole in the nanoparticle.

Figure 4.5: Simulation overview of the plasmonic modes for the respective nanopar-
ticles. (a) Schematic overview of the polarization states and quadrupole charge
distribution for P-polarized waves. The 3D arrows indicate the magnetic dipole for P
(red) and S (blue). (b and e) Charge distribution at the electric dipole resonance for
rings and disks. The electric dipole couples to a quadrupole mode in the combined
nanoparticle/gold film complex. (c and f) Electric field intensity at the electric dipole
resonance for rings and disks. (d and g) Induced magnetic dipole at the electric
dipole resonance for rings and disks.

4.3.1 Optical characterization

The angle dependent spectroscopic ellipsometry measurements were performed using
a commercial GESP5 [21] ellipsometer and a home-built setup based on a photo-
elastic modulator (PEM) [22]. For the GESP5 setup, the polarization of the incident
beam is modulated between P and S by a rotating polarizer, while for the PEM-
based setup, the polarization is modulated between linear and left- and right- circular
polarization states. Both measurement setups have different signal-to-noise ratios
in different spectral ranges, so depending on the spectral position of the LSPR we
choose the setup that performs best. All spectroscopic ellipsometry measurements
shown here were performed with the GESP5 setup, except for the refractive index
sensing measurements on gold rings which were performed on the home-built PEM-
based setup.

The phase information is extracted by performing lock-in measurements at the
modulation frequency. The measured quantities tan(Ψ) and cos(∆) are related by the
main equation of ellipsometry:

ρ =
RP

RS
= tan(Ψ) exp(i∆)

= tan(Ψ)(cos(∆) + i sin(∆))
(4.1)
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and represent the amplitude reflection ratio between P and S (tan(Ψ)) and the
phase difference between the reflected signals ∆ for the 2 polarizations (reflected
in the cos(∆) value). In that way, the angle dependence of the plasmon resonances
and the extremely narrow phase changes at their central frequency could be probed
experimentally. By properly designing the nanoparticle shape and density, the inter-
particle coupling can be tuned resulting in two spectrally slightly detuned resonances
for P- and S-polarized incident light. An overview of the angle dependent measure-
ments on the nanorings is given in figure 4.6. Panels a and b show the intensity
based reflection spectra for P- and S-polarized incident waves, while panels c and
d show the reflection ratio tan(Ψ) and the phase difference cos(∆) between the two
polarization states. With increasing incident angle, the P-resonance shows a blue
shift, while the S-resonance shows a red shift. These resonance shifts are reflected in
the phase sensitive ellipsometry measurements, in which at the center frequency of
the plasmon resonances a minimum and maximum in the reflection ratio (panel c),
and a pronounced phase difference between P and S (panel d) is observed.

P S

a b

c d

Figure 4.6: Angle dependent measurement data for gold nanorings. (a) and (b)
Measured intensity based reflection spectra for P- and S-polarizations. (c) Measured
values of tan(Ψ), the amplitude reflection ratio between P- and S-polarizations. (d)
Measured values of cos(∆), with ∆ the phase difference between both polarization
states.
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Similar measurements were performed for gold nanodisks, which have compara-
ble sizes to the rings, but are less densely packed due to different fabrication para-
meters. An overview of the angle dependent measurements for both polarizations is
given in figure 4.7. Both for P- (panel a) and S-polarized (panel b) waves, the electric
dipole resonances are blue shifted compared to the nanorings. With increasing angle
of incidence, for the P-polarization, a minor blue shift is observed, while the S-
resonance shows a pronounced red shift. Both resonances show much more spectral
overlap compared to the nanorings, which results in a totally different behavior in
their reflection ratio tan(Ψ) (panel c). For small angles of incidence we observe
a maximum in the reflection ratio at shorter wavelengths, while at larger angles
of incidence the S-resonance shifts to longer wavelengths with respect to the P-
resonance, resulting in similar spectra as for gold nanorings. If we take a closer
look at the phase difference between P and S (panel d), we observe again two phase
jumps, one for each polarization state, which are smaller in magnitude compared
to the nanorings. These smaller phase jumps can be attributed to the increased
spectral overlap for the two polarization states, which results in a smaller overall
phase difference.

P

a b

c d

S

Figure 4.7: Angle dependent measurements on gold nanodisks. Reflection spectra
for P- (a) and S-polarization (b). (c) Reflection ratio tan(Ψ). (d) Phase difference
cos(∆).
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4.3.2 Simulations of ellipsometric parameters

The angle- and polarization dependent optical response of the nanoring samples was
simulated using Comsol multiphysics [23]. An overview of the simulated spectra
is given in figure 4.8. The different spectra were calculated for a square lattice of
rings with a pitch of 250 nm (matched to the experimental average inter-particle
distance). By using periodic (Bloch) boundary conditions and scanning all the angles
involved for both polarizations, the angle dependent reflection and the ellipsometric
parameters were extracted. The reflected waves for P- and S-polarized waves were
recorded and their electric and magnetic fields were averaged out over one unit cell,
allowing to extract the amplitude and phase in order to evaluate the values of tan(Ψ)
and cos(∆). We used a periodic particle arrangement in order to take into account
the interactions between the neighboring particles, as these determine the spectral
shifts of the modes for P and S with changing angles of incidence. Simulations on
single particles would not include these interactions, and finite element simulations
on a random particle distribution were not possible due to computational limitations.
A nice qualitative agreement is obtained, where the P-resonance and S-resonances
show the blue shift (panel a) and red shift (panel b) respectively, similar to the
experimental data. Contrary to the measured data, the minimum of the reflection dip
shows a decrease with increasing angle of incidence. This behavior can be attributed
to the random particle distribution in our samples, that gives rise to inhomogeneous
broadening, which is most pronounced for large angles of incidence due to increasing
spot sizes. This explains why the maxima and minima in the reflection ratio (tan(Ψ))
are not observed at the largest angle of incidence in the experimental spectra, contrary
to the simulated data (panel c). Interestingly, if we compare the magnitude of the
phase difference between P and S, we clearly observe that the largest phase changes
are observed at the maxima and minima in the reflection ratio, which occur around
45o in the experiments (figure 4.6(d)), and at 75o in simulations (figure 4.8(d)).

Note that we didn’t show similar simulations for the disks, as simulations with
larger pitch (350 nm) also show grating SPP modes on the bottom gold layer, which
are not present in our random samples. We will discuss periodic disk arrays and the
associated grating modes in detail in chapter 5.

4.3.3 Inter-particle coupling mechanism

For the two nanoparticle geometries, we have illustrated that we can clearly identify
the phase changes at the LSPR frequency for the different polarization states. Now we
want to take a closer look at the plasmon modes involved and the dominating inter-
particle coupling mechanism. For both polarization states an electric dipole is excited
in the nanoparticle (figure 4.5 c and f), which shows a very broad linewidth (around
140 nm for rings and 100 nm for disks). This electric dipole resonance couples
directly (P-polarization) or capacitively (S-polarization) to an electric quadrupole
mode in the combined nanoparticle/gold film complex (figure 4.5 b and e). The
electric quadrupole mode also results in an induced magnetic dipole moment (figure
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P S

a b

c d

Figure 4.8: Angle dependent simulation data for a periodic array of gold nanorings.
(a) and (b) Simulated intensity based reflection spectra for P- and S-polarizations.
(c) Simulated values of tan(Ψ), the reflection ratio between P- and S-polarizations.
(d) Simulated values of cos(∆), with ∆ the phase difference between both polarization
states.

4.5 d and g), which is aligned perpendicular to the electric dipole in the nanoparti-
cles. By varying the angle of incidence and the polarization, the phase retardation
is scanned, resulting in different coupling efficiencies to the plasmon modes and
differences in the inter-particle coupling strength, which is reflected in spectral shifts
of the plasmon resonances [24]. The inter-particle coupling is mediated by electric
dipole/quadrupole coupling and magnetic dipole coupling, both in the longitudinal
and transversal direction. If the scattered fields of the nanoparticle are in phase (out
of phase) with the incident wave in the neighboring particles, the local resonance will
be enhanced (opposed) and show a blue (red) shift. We investigated the inter-particle
coupling by numerical simulations on 1D linear arrays of the respective nanoparticles
and were able to identify the dominating interparticle coupling mechanisms for the
different polarization states. For this study in Lumerical FDTD [25] we used perpen-
dicular incidence and varied the pitch, such that the excitation efficiency would be
similar for the LSPR modes, but the inter-particle coupling would be different. An
overview of the simulations is given in figure 4.9. The periodic 1D particle array
is constructed by using periodic boundary conditions in the horizontal direction and
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perfectly matched layers in the vertical direction (located far from the particle array).
The extracted spectral positions for the electric dipole resonances are shown in panel
b and show qualitative agreement with the experimental shifts for rings (figure 4.6)
and disks (figure 4.7).

(a) (b)

Figure 4.9: (a) Overview of the simulation structure and polarization states for the
mode coupling studies in 1D linear arrays of disks and rings. (b) The resonant
wavelengths are extracted as function of the pitch for both nanoparticles. Coupling
mechanism (1) dominates the coupling for S-polarized waves, while mechanism (2)
dominates for P-polarized waves in angle dependent measurements.

For P-polarized excitation, the coupling is dominated by longitudinal magnetic
coupling and transverse electric coupling, while for the S-polarized excitation the
coupling is dominated by longitudinal electric coupling and transverse magnetic coup-
ling.

4.3.4 Refractive index sensing

The samples were mounted in a flowcell to perform bulk refractive index sensing
measurements with different concentrations of glycerol in water. An overview of
these measurements is presented in figure 4.10. In panel a, the linewidth reduction
for the phase-sensitive measurements with respect to the intensity-based reflection
measurements is clearly illustrated for nanorings in air. At the dip of the LSPR for
both polarization states, a narrow phase change is observed in cos(∆). Panel b shows
the wavelength shift as function of increasing glycerol concentrations in water. Here
we used an incident angle of 70o, such that the incident angle at the sample/solution
interface matches the 45o incident angle of the reference measurement in air. As
expected, with increasing refractive index, we observe a red-shift of the resonance
positions for both polarization states.

Different plasmon modes are excited for P- and S-polarization, which show differ-
ent sensitivities to the refractive index. Moreover, depending on the spectral position
of both resonances and their spectral overlap, the shape of the cos(∆) signals can
change dramatically for the different nanoparticles. This effect is clearly observed
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a b

Figure 4.10: Refractive index sensing measurements on gold nanodisks and nanor-
ings for 45o incidence. (a) Comparison of phase-sensitive measurements (black) and
intensity based measurements (red) on gold nanorings in air, illustrating a dramatic
line width reduction in the phase-difference between P and S. (b) Refractive index
sensing measurements on disks and disks with variable concentrations of glycerol in
water.

when comparing the spectra for disks and rings in air and in solution. If the plasmon
modes for P and S show a lot of spectral overlap, the maximum phase difference
between the 2 modes will be reduced significantly. We clearly observe this reduction
for the rings the sensing solution (panel b) and the disks in air (figure 4.7), where the
overlap of the modes is the largest. This implies that for the gold rings the sensitivity
of the P-mode is much larger than for the S-mode, as they are separated by about 30
nm in air, while in the sensing solutions they clearly show spectral overlap. In order
to calculate the figure of merit of the 2 model systems, we calculated the sensitivities
for the combined phase-sensitive cos(∆) signals of the P- and S-modes and compared
these with the amplitude based reflection data. In the overview presented in table 4.1,
we can clearly see that the phase sensitive measurements show much narrower line
widths compared to their intensity-based counterparts. Due to this dramatic decrease
in the spectral footprint, the FOM could be boosted 3.9 and 6.1 times up to 8.3 and
16.5 for nanodisks and nanorings respectively. For the samples presented here, we
didn’t optimize the structures in order to reach the smallest possible line widths. This
implies that there is still a lot of room for improvement in the sample design. The
effects of inhomogeneous broadening can be largely suppressed by studying periodic
arrays. Moreover, by looking at asymmetric particles the resonances for P and S
can be spectrally detuned and in that way one could easily fit the linewiths of a
single resonance instead of the combined line width as we did in this work. Here we
mainly focused on proof-of-principle and therefore we restricted our measurements
to bulk changes in the refractive index. For structures similar to the ones described
here, we expect the decay length for the field enhancements to be several tens of
nanometers [6], which implies that these samples could also be applied for biological
sensing using antibody/antigen interactions, where the improved FOM could result in
lower detection limits.
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Table 4.1: Comparison between intensity- and phase-sensitive reflection measure-
ments on gold nanodisks and nanorings at an incidence angle of 45o.

Disks Rings
dλ/dn (nm/RIU) 208 380

FWHM reflection (nm) 98 139
FOM reflection 2.1 2.7

FWHM cos(∆) (nm) 25 23
FOM cos(∆) 8.3 16.5

FOM increase ratio 3.9 6.1

4.4 Conclusions

We have shown that the FOM for reflection based refractive index sensing can be
largely increased by measuring the phase of the reflected beam instead of its inten-
sity only. Around the center frequency of the LSPR, the electron cloud makes the
transition of in- to out-of-phase oscillation with respect to the driving field, which is
an intrinsic property of a plasmon resonance. This phase difference shows a much
smaller spectral footprint than the intensity based reflection measurements, resulting
in much narrower line widths and largely increased values of the FOM. For the
nanoparticles investigated in this work, we managed to increase the FOM up to 6
times for intrinsically broad dipole resonances.
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Chapter 5

The interaction of localized and
propagating surface plasmons
in sensing applications

5.1 Introduction

In this chapter we investigate the interaction of localized (LSPR) and propagating
(SPP) plasmon modes for sensing applications. We studied periodic arrays of gold
nanodisks on top of a continuous gold layer and a silica spacer, similar to the struc-
tures discussed in chapter 4. The periodicity of the sample structure has two key
advantages:

(1) The coupling between the LSPR modes in the neighboring particles is the
same for all particles in the array, resulting in much narrower line widths for the
LSPRs [1].

(2) The periodic particle array acts as a grating which allows for very efficient
excitation of SPP modes on the gold layer below.

By properly designing the size and pitch of the gold nanoparticles, the LSPR
mode and the SPP mode for the P-polarization can be tuned to be in the same spectral
region, resulting in very strong coupling of both modes. We observe pronounced
Fano-interference between these 2 modes which show anti-crossing behavior as we
scan the angle of incidence. We measured the phase difference between P- and
S-polarized waves by spectroscopic ellipsometry and characterized the phase dif-
ferences in the spectral regions where the SPP and LSPR modes interact strongly.
The resulting line widths of the LSPR and SPP modes are strongly reduced com-
pared to random nanoparticle arrays and the resulting FOM values for phase-sensitive
measurements reach values ranging from 16 to 58 for the respective plasmon modes.

The investigated sample structures are illustrated in figure 5.1. We studied two
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500 nm

(a) (b)

Figure 5.1: (a) Schematic sample structure for a 1µm2 sample area of periodically
arranged gold nanodisks. The red wire box indicates the unit cell used in simulations
(b) Top view SEM picture in which the grains of the bottom gold layer are clearly
visible.

sample geometries consisting of a square array of gold nanodisks with a pitch of 400
nm and a disk diameter of 100 nm and 140 nm.

5.2 Sample fabrication

The periodic arrays of gold nanodisks were fabricated by EBL and the processing
steps are outlined in figure 5.2. We start from a glass substrate which is cleaned using
H2S O4/H2O2 3 : 1 for 15 minutes, followed by an oxygen plasma treatment (a).
The Au(100nm) and S iO2(50nm) layers are sputter deposited onto the substrate (b).
A 200 nm PMMA e-beam resist layer is spin coated on top (c). The disk structures
are written in PMMA resist by EBL with diameters of 100 and 140 nm. A periodic
array of holes in PMMA is created by development of the resist (d). 30 nm of Au is
evaporated forming disks in the holes (e). The PMMA layer is lifted off leaving the
array of disk particles on the substrate (f).

After the sample fabrication, the samples were annealed at 400oC in nitrogen
environment in order to obtain recrystallization of the grains. During this process, the
grain sizes increase while the number of scattering sites at the boundaries is largely
decreased, resulting in major reduction in the damping of the plasmon modes [2]. All
plasmon resonances present in our samples show a minor blue shift (about 10 nm),
and more pronounced and narrower dips in the reflection spectra after the annealing
step. A similar observation is made for the spectroscopic ellipsometry spectra, in
which the dips and peaks (in tanΨ) become more pronounced and narrow, and the
measured phase difference (in cos∆) at the plasmon resonances is increased and
shows a reduction in line width.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Sample fabrication steps for periodic disk arrays.

5.3 Results and discussion

5.3.1 Basic optical characterization

Our periodic arrays of gold nanodisks show 3 pronounced plasmon modes that can
be used for sensing applications. As in the case of the random disks described in
the previous chapter we observe a LSPR in the gold disks for P- (P-LSPR) and S-
polarization (S-LSPR). On top of that a propagating SPP mode on top of the bottom
gold layer is excited for the P-polarization due to very efficient grating coupling by
the disk array. The interaction between these 3 modes can be tuned by changing the
disk size and the angle of incidence. Figure 5.3 shows reflection spectra for 100 nm
(panel a) and 140 nm (panel b) disk sizes at an incident angle of 45o. Note that for the
S-polarization the SPP grating mode falls outside of the spectral region of interest, so
it does not interact with the S-LSPR.

For the 100 nm disks in panel (a) the P-LSPR is observed at 640 nm, while the
propagating SPP mode is observed at 760 nm. Both of them are spectrally separated
and show a symmetric line shape, indicating that they do not interact strongly. For
the S-polarization we only observe a LSPR mode at 670 nm. For the 140 nm disks
in panel (b) on the other hand we can clearly observe 2 modes with asymmetric line-
shapes for the P-polarization, indicating strong Fano interference [3] between the
localized and the propagating mode. In this case we observe the SPP mode at 705
nm and the P-LSPR mode at 795 nm, meaning their spectral positions are switched.
For the S-polarization we observe the LSPR mode at 760 nm. In the next sections
we will discuss these interactions in more detail by investigating the angle dependent
reflection spectra and simulations.
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(a) (b)

SPP

LSPR SPP LSPR

Figure 5.3: Measured (full lines) and simulated (dotted lines) reflection spectra for
P- and S-polarized waves under 45o incidence. (a) For 100 nm disks the P-LSPR is
excited at shorter wavelengths than the SPP mode. (b) For 140 nm disks the SPP
mode is excited at shorter wavelengths than the P-LSPR mode. Due to the coupling
of the SPP and P-LSPR mode, the line shapes are highly asymmetric.

SPP grating mode

In this section we want to look in more detail to the behavior of the SPP grating
modes in periodic nanodisk samples. We first focus our attention to 100 nm disks,
where the SPP mode occurs at longer wavelengths than the LSPR mode, as illustrated
in figure 5.3 (a). We performed angle and polarization dependent measurements and
simulations [4], of which the overview is presented in figure 5.4.

For the P-polarization we clearly observe two pronounced reflection bands in
the measurements (panel a) and simulations (panel b) which exhibit nice qualitative
agreement. The lower broad reflection band corresponds to the P-LSPR, which shows
a minor red shift with increasing angle of incidence. The upper narrow reflection
band corresponds to the propagating SPP mode which is excited on the top of the
continuous gold layer and shows a pronounced red shift with increasing angle of
incidence. For the S-polarization we only observe one broad reflection band for the
LSPR which also shows a very minor red shift with increasing angle of incidence.

The grating SPP mode shows a red shift with increasing angle of incidence, which
has been reported before for plasmonic grating structures [5]. The structure reported
here differs from a conventional plasmon grating, as we have a periodic array of
gold disks on top of a continuous gold layer and a dielectric spacer. The grating of
nanoparticles allows for very efficient excitation of propagating SPP plasmon modes
on the continuous gold layer. For perpendicular incidence only one grating peak is
observed, which corresponds to the excitation of propagating plasmons that travel
both to the left and to the right. If the angle of incidence is increased the grating
mode splits up in two diffracted peaks, as illustrated in the schematic overview in
figure 5.5. These modes are the ν = +1 diffracted grating mode (right) and ν = −1
diffracted grating mode (left) which can be described by the grating formula
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Figure 5.4: Intensity plots for angle dependent reflection measurements and simula-
tions on 100 nm disks in air. (a) Measured spectra for P-polarization. (b) Simulated
spectra for P-polarization. (c) Measured spectra for S-polarization. (d) Simulated
spectra for S-polarization.
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Figure 5.5: Schematic overview of the plasmon dispersion curve and grating
coupling of plasmons to the +1 (right) and -1 (left) order. For increasing values of the
angle of incidence θ the light lines depict the x-component of the wave-vector, while
the colored arrows indicate the grating wave vector, which has the same magnitude
for all incident angles.

kS PP = k sin θ ± ν2π
a

(5.1)

in which a depicts the pitch of the grating.

With increasing angle of incidence we observe a blue shift for the +1 and a
red shift for the −1 diffracted grating order. The grating mode we observe in our
measurements corresponds to the latter mode. These shifts can be understood by
looking at the waveguided modes which are excited at the respective resonances. For
the lower energy (−1 diffraction) mode the Poynting vector of the excited SPP wave is
anti-parallel with the in-plane wave vector of the incident wave, while for the higher
energy (+1 diffraction) mode the Poynting vector of the excited SPP mode is parallel
with the in-plane wave vector of the incident wave. Therefore, with increasing angle
of incidence, the incident wave will provide additional momentum to the higher
energy grating mode, resulting in a blue shift. For the lower energy mode however,
with increasing angle the additional momentum from the incident wave will reduce
the total energy of the mode which travels anti-parallel to the incident wave, resulting
in a red shift. This explains the red shift with increasing angle of incidence for the
SPP mode in figure 5.4. We don’t observe the higher energy mode for a pitch of 400
nm in the measurements and simulations, due to the fact that at wavelengths below
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Figure 5.6: Color plots of the time averaged energy flow for 100 nm disks. The
incident wave is propagating to the right. (a) At the SPP mode at 690 nm the Poynting
vector (green arrows) is anti-parallel to the in-plane wave vector of the incident wave.
(b) Away from the plasmon resonances at 800 nm the Poynting vector (green arrows)
is parallel to the in-plane wave vector of the incident wave.

600 nm the reflection spectra are dominated by inter-band transitions of the gold.
In figure 5.6 an overview is presented of the simulated power flow at the SPP

mode for an angle of incidence of 30o. In case of 100 nm nanodisks with a pitch
of 400 nm, the power flow at the grating SPP mode is anti-parallel with the in-plane
component of the incident wave vector for all angles of incidence. In simulations
with increased pitch, we clearly observe that the SPP grating mode splits up in
two propagating modes for non-perpendicular incidence. With increasing angles of
incidence, these 2 components show opposite shifts as expected. The Poynting vector
plots at both grating modes clearly indicate that the excited SPPs of the blue (red)
shifting mode travel parallel (anti-parallel) to the in-plane component of the incident
wave.

Fano interference between localized and propagating plasmon modes

Now that we understand the behavior of the non-interacting propagating SPP mode,
we want to investigate how it couples with the localized resonance in the nanoparti-
cles. To that extent, we fabricated gold disks with a 140 nm diameter, of which the
localized resonance is shifted to longer wavelengths. An overview of the angle and
polarization dependent reflection measurements and simulations is provided in figure
5.7, which show good qualitative matching. We can clearly observe that the spectral
positions of the P-LSPR and SPP mode have switched compared to the 100 nm disk
case.

As in the previous section, we observe again 2 reflection bands for the P-polarization
and one reflection band for the S-LSPR. In P-polarization the lower narrow band now
corresponds to the SPP mode, while the upper broad band corresponds to the LSPR
mode. It is clear that also in this case the SPP mode shows a red shift with increasing
angle of incidence, but we see that it starts to interfere strongly with the localized
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Figure 5.7: Reflection spectra and intensity plots for angle dependent measurements
and simulations on periodic arrays of 140 nm disks in air. (a) Measured spectra
for P-polarization in case of weak coupling (30o) and strong coupling (60o). (b)
Simulated spectra for P-polarization in case of weak coupling (30o) and strong
coupling (60o). (c) Measured mode plot for P-polarization. (d) Simulated mode plot
for P-polarization. (e) Measured mode plot for S-polarization. (f) Simulated mode
plot for S-polarization.
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Figure 5.8: Extracted in plane power flow for 140 nm disks. Positive (negative)
values represent energy flow (anti-) parallel with the in-plane component of the
incident wave vector.

modes when the angle of incidence exceeds 45o. As a result, the red shift of the
SPP grating mode is decreased and it shows pronounced broadening. The LSPR on
the other hand shows a severe decrease in line width and increased red shift due to
anti-crossing [6, 7] behavior of the two plasmon modes. If we look at the extracted
power flow for different angles of incidence in figure 5.8, we can clearly see that the
power flow is anti-parallel with the in-plane wave vector of the incident wave at the P-
LSPR and the SPP mode (and even for the intermediate wavelengths for small angles
of incidence). For angles above 50o we see that the power flow at the SPP mode
decreases and even reverses its direction due to the pronounced interaction with the
P-LSPR. At that point, the mode even starts to blue shift when we increase the angle
of incidence further.

If we compare the mode plots of figure 5.7 with those for randomly distributed
gold nanodisks from the previous chapter in figure 5.9, we can see that the strong
interaction between the P-LSPR and the SPP mode influences the spectral position of
the P-LSPR significantly, while for the S-LSPR we don’t observe any changes as it is
not interacting with any other plasmon modes.

As a next step, we repeated the angle dependent reflection measurements on the
same sample in water, of which the mode plots are given in figure 5.10. As the
different plasmon modes for P- and S-polarization have different sensitivities to the
refractive index, we observe some pronounced changes in their interaction.

Upon exposure to water, the P-LSPR and SPP mode switch their spectral positions
and the P-LSPR occurs at shorter wavelengths than the SPP mode. Now we observe
similar anti-crossing behavior for the P-LSPR and SPP resonances for small angles
of incidence, where it is clear that the P-LSPR is pushed to even higher energies than
for the measurements in air due to the pronounced coupling between the LSPR and
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Figure 5.9: Intensity plots for angle dependent reflection measurements on randomly
distributed 140 nm disks in air. (a) Measured spectra for P-polarization. (b)
Measured spectra for S-polarization.
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Figure 5.10: Reflection spectra and intensity plots for angle dependent measurements
on periodic arrays of 140 nm disks in water. (a) Measured spectra for P-polarization
in case of strong coupling (30o) and weak coupling (60o). (b) Measured spectra for
S-polarization. (c) Measured mode plot for P-polarization. (d) Measured mode plot
for S-polarization.
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the SPP resonance. The spectral response due to the interaction of both modes is
similar to the one observed for large angles of incidence in air: the SPP mode shows
pronounced broadening while the P-LSPR mode shows a severe reduction in line
width for the smallest angles of incidence. With increasing angles of incidence, the
SPP mode shows the expected red shift, opening up spectral space for the LSPR mode
to show the same trend. As a result of the spectral separation of both modes with
increasing angles of incidence, the line width of the P-LSPR is broadened while it
narrows for the SPP mode. Note that even for large angles of incidence, the resonance
position of the P-LSPR does not shift beyond its resonance position in air, implying it
is still interacting with the SPP mode which prevents the P-LSPR to shift to its natural
resonance position.

5.3.2 Phase-sensitive spectroscopic ellipsometry

In the previous chapter, we already showed that we can pick up the phase difference
between the reflected signals for P- and S-polarized waves in spectroscopic ellipso-
metry measurements, and that pronounced phase differences are observed at the cen-
ter frequency of the LSPR [8, 9]. Similar measurements were already reported for
propagating SPP modes in SPR based sensing [10, 11]. Here we show that we can
measure both of them in the same sample structures in which the P-LSPR and SPP
modes are strongly interacting. As such, we can investigate the phase differences at
the Fano resonance between the localized and propagating modes.

Figure 5.11 shows the spectroscopic ellipsometry measurements and simulations
for 100 nm disks in air. In the tanΨ (panel a and c) value we observe for increasing
wavelengths a first dip for the P-LSPR, a peak for the S-LSPR and a second dip for
the SPP mode which shows a pronounced shift with the incident angle. As there
is no pronounced interaction between the different plasmon modes, and they are all
spectrally separated, we observe 3 pronounced phase differences in the cos∆ value
(panel b and d), one for every plasmon resonance. The two LSPRs show the most
pronounced phase difference, while the SPP grating mode only shows a very small
phase difference. Similar to the observations for random particle arrays (chapter 4)
we see that the largest phase differences are observed around the minima and maxima
of the tanΨ value, which are most pronounced for the LSPRs.

Figure 5.12 shows the spectroscopic ellipsometry measurements for 140 nm disks
in air. As outlined in the previous section, the spectral position of the LSPR and the
SPP mode in the P-polarization are switched with respect to the 100 nm disks. The
increased interaction between these 2 modes results in asymmetric line shapes and
larger phase differences at the center frequency of the different plasmon modes.

In the tanΨ value (panel c) we observe for increasing wavelengths a first dip
for the grating SPP mode, a peak for the S-LSPR and a second dip for the P-LSPR.
The SPP mode shows a much more pronounced resonance dip (for small angles of
incidence) compared to the 100 nm disks, and the resulting phase change (panel d)
is also more pronounced. The second phase change can be attributed to the S-LSPR
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Figure 5.11: Ellipsometry measurements and simulations for periodic arrays of
100 nm gold nanodisks. (a) Measured reflection spectra in P-polarization. (b)
Measured reflection spectra in S-polarizations. (c) Measured reflection ratio tanΨ.
(d) Measured phase difference between P- and S-polarization cos∆. (e) Simulated
values of tanΨ. (f) Simulated values of cos∆.
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(a) (b)(a) (b)

(c) (d)

Figure 5.12: Ellipsometry measurements on periodic arrays of 140 nm gold
nanodisks. (a) Measured reflection spectra in P-polarization. (b) Measured reflection
spectra in S-polarization. (c) Reflection ratio tanΨ. (d) Phase difference between P-
and S-polarization cos∆.
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Figure 5.13: Comparison of the spectroscopic ellipsometry measurements in air and
water for 140 nm disks at an angle incidence of 30o. P and S indicate the LSPR
mode for the respective polarization state, while SPP refers to the propagating mode
in P-polarization. (a) Measured tanΨ values. (b) Measured cos∆ values.

while the smaller phase change at longer wavelengths is due to the P-LSPR. For
large angles of incidence (θ > 50o), the grating SPP mode does not shift to longer
wavelengths any more and even shows a minor blue shift for angles beyond 70o, due
to the coupling with the P-LSPR mode.

If we compare the reflection plots for the 140 nm disks in air (figure 5.7) and water
(figure 5.10), we observe the switching of the spectral positions of the SPP mode and
the P-LSPR mode and an increased spectral overlap of these 2 modes in water. The
strong interaction between these modes results in completely different ellipsometry
spectra in the two media, as illustrated in figure 5.13. Although the spectral overlap
of the different plasmon modes is increased, we observe a larger phase difference
in the cos∆ value (panel b) for all resonances, which can be attributed to strong
Fano-interference between the P-LSPR and SPP mode. The line widths of the phase
sensitive signals show pronounced narrowing compared to the random particle dis-
tributions in the previous chapter, due to a decrease of the effects of inhomogeneous
broadening.

5.3.3 Refractive index sensing

The extremely narrow line widths observed in phase sensitive spectroscopic ellipso-
metry measurements allow us to perform refractive index sensing measurements with
largely increased values of the FOM and potentially much lower detection limits. We
performed bulk refractive index sensing measurements (figure 5.13 a and b) in a flow
cell by pumping solutions of glycerol in water with variable concentrations over our
140 nm disk sample and quantified the sensitivities and the FOM for the different
plasmonic modes. In a second step we functionalized the sample with a carboxylated
self-assembled monolayer (SAM) (C11-chain with COOH functional group, length 2
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(a) (b)
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Figure 5.14: Refractive index sensing measurements for different concentrations of
glycerol in water with an incident angle of 30o. (a) and (b) Measured ellipsometry
parameters for cleaned gold nanodisk samples. (c) and (d) Measured ellipsometry
parameters for gold nanodisks functionalized with a self-assembled monolayer.

nm) and repeated the glycerol tests (panel c and d). In that way we can quantify the
difference between local sensing (in close proximity of the nanostructures) and bulk
sensing.

As expected, we observe a red shift for all the plasmon resonances with increasing
values of the refractive index. The spectra for the sample with and without SAM
are very similar, although all resonances show an additional red shift after func-
tionalization. For the LSPRs we observe a red shift of 4 and 5 nm for the S- and
P-polarization respectively and 6 nm for the SPP mode. An overview of the fitted
resonance positions of the different modes is given in figure 5.15, together with linear
fits to determine the sensitivity.

Clearly we observe a decrease in the sensitivity for the S-LSPR after functional-
ization with a SAM and similar sensitivities for the P-LSPR and SPP grating mode.
The decrease in sensitivity for the S-LSPR can be attributed to the fact that the bulk
is shielded from the surface of the nanoparticles where the highest electric field
enhancements are observed. As the typical decay lengths for the LSPRs are in the
order of a few tens of nanometers [12], we would expect a similar result for the P-
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Figure 5.15: Extracted resonance positions and fitting curves for the sensitivity in
glycerol sensing measurements. The square symbols and full lines are the data for
the cleaned nanodisk samples while the round symbols and dashed lines are the data
for the sample functionalized with a SAM.

Table 5.1: Comparison of the sensitivities and FOMs for sensing measurement with
and without SAM functionalization at an incidence angle of 30o.

Without SAM With SAM
Mode P-LSPR S-LSPR SPP P-LSPR S-LSPR SPP

dλ/dn (nm/RIU) 375 218 291 371 169 271
FWHM (nm) 7 9 5 7 10 5

FOM 54 24 58 53 17 54

LSPR. If we compare the fits for the LSPR in S- and P-polarization, this is clearly not
the case.

From the overview in table 5.1, we see that also for the SPP mode and the P-
LSPR mode the sensitivity is slightly reduced. Surprisingly, the sensitivity for the
P-LSPR mode turns out to be higher than the one for the SPP mode and even twice as
large as the sensitivity for the S-LSPR. If we compare the sensitivity with the values
obtained for random nanoparticle distribution in the previous chapter, this turns out
to be a very unusual result. We would expect the sensitivity of the two LSPR modes
to be similar to the ones for the random particles, but we only observe this for the
S-LSPR. Moreover we would expect that the sensitivity of the SPP mode would be
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the largest, as the decay length for a propagating mode is much longer than for a
localized mode. In fact, the sensitivity for the SPP mode would be much larger than
the one for the P-LSPR if the two modes wouldn’t show any pronounced coupling.
If we compare the spectra in air and water, we notice that the SPP-mode shifted
beyond the P-LSPR mode in water, which already indicates that the SPP mode shows
a higher sensitivity to the refractive index. On top of that, for the measurements in
water (figure 2.10) we observe anti-crossing behavior between the P-LSPR and SPP
mode, which causes the P-LSPR to be blue shifted with respect to its spectral position
in air. When the refractive index of the surroundings is increased, the SPP mode
shifts to longer wavelengths and thus away from the P-LSPR mode, allowing this one
to also shift closer to its natural resonance position. Therefore we observe a much
larger sensitivity for the P-LSPR in the periodic array than for random nanoparticle
distributions. This type of Fano-interference could therefore also be exploited to
boost the refractive index sensitivity of LSPR modes.

5.4 Conclusions

We have shown that the interaction between localized and propagating plasmon re-
sonances in periodic arrays of gold nanoparticles on top of a silica spacer and a
continuous gold layer can be used to tune the sensing performance. By adjusting
the size of the nanoparticles and the pitch it is possible to tailor the optical response
in such a way that the localized and propagating modes can be excited in a small
spectral window. The Fano-interference between these 2 modes results in more
pronounced phase differences with reduced line widths, making them very interesting
for refractive index sensing applications. The sensitivity of the LSPR can be enhanced
when it interacts with the SPP mode and can reach values which are twice as large as
those for the non-interacting mode. The resulting line widths are in the range between
5 and 10 nm and the FOM values reach values in between 17 and 58 for the different
plasmon modes.
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Chapter 6

Conclusions and Outlook

Although the field of metamaterials dates back only to the year 2000, it has grown
tremendously over the past decade. Metamaterials are man-made artificial materials
of which the optical properties can be engineered to generate the desired response to
an incident electromagnetic wave. They consist of sub-wavelength sized structures
which can be thought of as the atoms in conventional materials. The collective res-
ponse of a randomly or periodically ordered ensemble of such meta-atoms defines the
properties of the metamaterial, which can be described in terms of effective material
parameters such as the permittivity, permeability, refractive index and impedance.
These effective material parameters can be tailored at will to obtain the desired optical
response, resulting in an improved control over the propagation of electromagnetic
waves. This paves the way for many exciting applications such as negative refractive
index materials, invisibility cloaking, advanced electromagnetic coatings for active
semiconductor devices, integrated optical chips and interconnects, polarization rota-
tion devices, slow light applications, novel biological and chemical sensors and many
more.

In this thesis we focused on optical metamaterials in the visible and near-infrared
wavelength range for sensing applications. The meta-atoms of the investigated sam-
ples are plasmonic resonators which we manufactured in bio-compatible materials
such as gold and silica. The structures were fabricated by means of self-assembly pro-
cesses such as nanosphere lithography (bottom-up) and conventional electron beam
lithography (top-down).

In chapter 3 we proved the feasibility to fabricate a self-assembled version of the
widely studied double fishnet metamaterial which exhibits a negative refractive index
in the near-infrared wavelength range. A self-assembled monolayer of polystyrene
beads was used to define a hexagonal pattern of round holes in the gold-silica-gold
MIM layer stack. The obtained sample structures covered areas up to several several
hundreds of square microns with single lattice orientation and up to square millimeter
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scales with multiple lattice orientations. The number of defects was small, resulting
in similar performance as the electron beam lithography based reference samples.

In chapter 4 we showed that a self-assembled metamaterial of randomly distributed
plasmonic gold nanoparticles on top of a continuous gold layer and a thin silica spacer
serves as an excellent substrate for refractive index sensing. We performed angle de-
pendent spectroscopic ellipsometry measurements in which the polarization state of
the incident wave was modulated between P- and S-polarization, such that we could
measure the phase difference between both reflected waves by lock-in measurements.
The electric dipole resonances in the gold nanoparticles become spectrally detuned
as we scan the angle of incidence, which allows us to detect the phase difference
at the center frequency of both localized surface plasmon resonances. At the center
frequency, the electron cloud makes the transition from in- to out-of-phase oscillation
with respect to the incident wave, which happens in a very narrow spectral region.
As this phase change is an intrinsic property of any given plasmon resonance, phase-
sensitive measurements provide a powerful tool to study the fundamental properties
of plasmon resonances. The resulting line widths could be reduced with a factor 4 to
6, resulting a major boost of the Figure-Of-Merit for refractive index sensing which
could allow to reduce the detection limit significantly. For the two model systems
of gold nanodisks and nanorings the obtained values for the FOM reached values as
high as 8 and 16, for intrinsically broad dipole plasmon resonances.

In Chapter 5 we extended the concepts developed in chapter 4 to periodically or-
dered arrays of plasmonic resonators in the same sample configuration. Due to the
periodicity of the samples, the effects of inhomogeneous broadening of the LSPRs are
severely reduced, resulting in much more narrow line widths and improved FOMs for
refractive index sensing. On top of that, the periodic array of gold nanodisks acts as a
very efficient grating for the excitation of propagating SPPs on the gold layer below.
These propagating SPP modes interact strongly with the LSPRs in the nanoparticles,
giving rise to strong Fano-interference which results in very asymmetric line shapes
for the interacting plasmon modes. By properly tuning the particle size and the pitch
of the nanodisk arrays, the interaction between these modes can be tuned, and we
observe anti-crossing behavior of the propagating and localized modes as we scan the
angle of incidence. We observe larger phase differences at the center frequencies of
the interacting plasmon modes with largely reduced line widths, which are applied for
refractive index sensing. We clearly showed that in case of strong interaction between
the SPP and LSPR mode, the sensitivity of the localized mode can be enhanced to
almost twice the value of the non-interacting mode, providing an extra degree of
freedom to optimize plasmonic structures for refractive index sensing. The FOM
for the non-interacting LSPRs was improved up to 3 times the value of randomly
distributed nanoparticles, reaching values up to 24. For the interacting SPP and LSPR
modes the sensitivity was greatly enhanced while the line could be reduced severely,
resulting in FOM values up to 54 and 56 for the respective modes.
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To summarize, we have shown that high quality plasmonic metamaterials can be fa-
bricated by self-assembly based bottom-up fabrications methods. The self-assembled
samples perform very similar to reference structures based on conventional e-beam
lithography. We have shown that spectroscopic ellipsometry is a very powerful tool
to measure the phase differences at the center frequency of localized and propa-
gating plasmon resonances. As we are measuring the transition from in- to out-
of-phase oscillation of the electron cloud - an intrinsic property of any plasmon
mode that occurs in a very narrow spectral region - the resulting line widths are
severely reduced, giving rise to a major boost of the FOM for refractive index sensing.
Furthermore we proved that we can push the FOM to higher values by properly
designing periodic arrays of plasmonic nanostructures in which propagating SPP and
localized LSPR modes show pronounced Fano interference. The strong interaction
between these modes allows to enhance the refractive index sensitivity of localized
plasmon modes significantly.

In the field of metamaterials many challenges are still ahead of us. While the field
started out in the quest for its “holy grail”, negative refractive index materials (NIMs)
and perfect lenses, nowadays it extends far beyond that. Although NIMs are very in-
teresting from the fundamental point of view, their real-life application in microscopy
or lithography is not straightforward, as the increased resolution is limited to the near
field of the NIM.

We have provided proof-of-principle for several novel concepts in plasmonic meta-
materials for refractive index based sensing. These concepts can serve as a toolbox for
the future design of bio-chemical sensors with superior performance to the currently
available platforms. In this work we mainly focused on the optimization of the
sample performance which can be quantified by the FOM. In practical applications
this is of course not the only parameter to be considered, as the detection limit also
depends strongly on the signal-to-noise ratio and the quality of the interfacing with
the analyte molecules. Therefore in a next step, the applicability of the developed
concepts should be further assessed by chemical and biological functionalization of
the substrates in order to quantify the sensitivity and the attainable detection limits in
a real-life application. On the sample design side there is still room for improvement
as there are many different parameters to tailor the plasmonic response and to fine tune
the interaction between the different plasmon modes. Due to their small dimensions,
plasmonic metamaterial sensors offer great potential for fully integrated lab-on-chip
sensing platforms, as both light sources and semiconductor detectors can be inte-
grated on-chip and interface with the plasmonic structures, while the data processing
can be integrated through regular CMOS designs.

We expect that spectroscopic ellipsometry will have a significant influence on re-
search in metamaterials and plasmonics in the coming years, as it is a commercially



124 Chapter 6

available non-destructive measurement method which can probe the phase informa-
tion of localized and propagating plasmon modes, providing deeper insight in their
nature. Another closely related technique has attracted more and more attention
from the plasmonic community recently, which is the magneto-optical Kerr effect
(MOKE). The technique is commonly used for the characterization of the magnetic
properties of thin layers, but obviously plasmons also interact strongly with magnetic
fields, which implies that magnetic fields could be used as an additional degree of
freedom in the design of magneto-plasmonic applications. It was already shown
that symmetrical non-magnetic gold nanoparticles also show magneto-optical activity
when exposed to magnetic fields, and by introducing symmetry breaking such effects
could be greatly enhanced. These effects are studied in the field of chiral metamateri-
als, where the plasmonic structures are designed in such a way that they can convert
the polarization of an incident wave into the desired state, which is a crucial step on
the path towards fully integrated optical chips.
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And as we wind on down the road
Our shadows taller than our soul

There walks a lady we all know
Who shines white light and wants to show

How everything still turns to gold
And if you listen very hard

The tune will come to you at last
When all are one and one is all
To be a rock and not to roll...

- Jimmy Page -
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